期刊文献+

隐层改进的BP网络在织物染色配色中的应用 被引量:3

Research on Application of BP Neural Networks in Computer Color Matching for Textile Dyeing Based on Hidden Layer Improvement
下载PDF
导出
摘要 为提高BP网络及其改进网络的收敛和泛化能力,依据计算机配色理论,深入研究了BP神经网络的优缺点,在此基础上提出了一种基于隐层输出反馈改进的BP网络训练算法应用于织物染色配色的算法,并按照此算法进行了织物染色的计算机配色实验。实验验证了人工神经网络算法在织物染色配色中应用的可能性和可靠性,为神经网络模型在织物染色配色中选择和构造合适的高性能网络结构提供了参考。 In order to improve the convergence and generalization capacity of BP neural network,the fundamental computer color matching principles based on Kubelka-Munk theory is introduced in this paper.The advantages and disadvantages of neural network in color matching for textile dyeing are discussed.And then a network is designed and trained by a modified training algorithm based on BP neural network,which references the output of hidden layer,for textile dyeing computer color matching.Finally,the possibility and reliability of the modified BP network used in color matching for textile dyeing have been confirmed by experiments.Meanwhile,a reference is provided for choosing a suitable neural network model.
出处 《青岛大学学报(工程技术版)》 CAS 2008年第4期40-44,共5页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(No.60743004)
关键词 计算机配色 KUBELKA-MUNK理论 BP神经网络 隐层改进 computer color matching Kubelka-Munk theory BP neural network hidden layer improvement
  • 相关文献

参考文献6

二级参考文献18

  • 1王增利,姜东菲,徐光耀.电脑配色系统中染料数据库的建立与优化[J].染整技术,1996,18(2):34-36. 被引量:5
  • 2郑宝海,金远同.现代电脑测色配色技术的新进展[J].天津纺织工学院学报,1997,16(1):88-92. 被引量:4
  • 3王授伦.电子分色制版新技术[M].北京:中国纺织出版社,1999..
  • 4董振礼.测色及电子计算机配色[M].北京:中国纺织出版社,1998..
  • 5Li Y, Rad A B, Peng W. An Enhanced Training Algorithm for Multilayer Neural Networks Based on Reference Output of Hidden Layer[J]. Neural Comput & Applic. , 1999,8:218-225.
  • 6Jenkins WM. Approximate analysis of structural grillages using a neural network [ J ]. Proc Instn Civil Engrs Structs Buildings, 1997,122:355-363.
  • 7Battiti R. Accelerating backpropagation learning, two optimisation methods[ J ]. Complex System., 1989, 3:331-342.
  • 8Cybenko G. Approximation by superposition of a sigmoidal function[J]. Math. Control Signals Syst. ,1989, 2: 303-314.
  • 9Stein R.Selecting data for neural networks[J].AI Expert,1994,(2):42-7.
  • 10闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001..

共引文献44

同被引文献47

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部