期刊文献+

贝叶斯改进BP神经网络在织物染色配色中的应用 被引量:1

Research on Application for Color Matching in Textile Dyeing Based on BP Neural Network Adapted by Bayesian Regularization Algorithm
下载PDF
导出
摘要 针对BP算法及其改进算法泛化能力不强的问题,探讨了用贝叶斯正规化算法与LM算法的结合来提高BP神经网络的泛化能力。结果表明,在相同网络规模或误差条件下,贝叶斯正规化算法泛化能力明显优于基本BP算法及其它改进的BP算法,且收敛速度较快。因此文中把贝叶斯正规化算法与LM算法结合应用到了织物染色的计算机配色中,其预测的配方和实验的数据比较接近,证明了该方法的可行性。 In order to solve the weak generalization capacity problem about the general and improved BP algorithms,how to raise generalization capacity of BP neural network by joining the Bayesian Regularization algorithm and the LM algorithm has been researched in this paper.Based on the same network size or error probability,the results show that Bayesian Regularization algorithm has better generalization capacity than the general and other improved BP algorithms,and it has higher convergent speed.The recipe of the method adapted by joining the Bayesian Regularization algorithm and the LM algorithm show that it is very close to the experiment data.This proves that the algorithm researched in this paper is feasible.
出处 《青岛大学学报(工程技术版)》 CAS 2008年第4期45-49,共5页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(No.60743004)
关键词 BP算法 贝叶斯正规化算法 LM算法 计算机配色 BP algorithm bayesian regularization algorithm LM algorithm computer color matching
  • 相关文献

参考文献6

二级参考文献43

  • 1魏东,张明廉,蒋志坚,孙明.基于贝叶斯方法的神经网络非线性模型辨识[J].计算机工程与应用,2005,41(11):5-8. 被引量:28
  • 2王增利,姜东菲,徐光耀.电脑配色系统中染料数据库的建立与优化[J].染整技术,1996,18(2):34-36. 被引量:5
  • 3郑宝海,金远同.现代电脑测色配色技术的新进展[J].天津纺织工学院学报,1997,16(1):88-92. 被引量:4
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..
  • 5王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 6王晖 王广生 等.模糊控制与神经网络及遗传算法在电力系统中的应用研究.电力科学研究院技术报告[M].,1997..
  • 7王晖 韩新阳.湖北电网短期电力负荷预测系统.电力科学研究院技术报告[M].,1999..
  • 8Randall S Sexton, Robert E Dosey, John D Johnson. Toward global optimization of network: A comparison of the genetic algorithm and back propagation. Decision Support Systems, 1998. 22:171 - 185.
  • 9Randall S Sexton, Jatinder N D Gupta.Comparative evaluation of genetic algorithm and back propagation for training neural networks. Information Sciences , 2000. 129:45 - 59.
  • 10Randall S Sexton, Robert E Dorsey, John D Johnson.Optimization of neural network: A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research, 1999. 114:589 - 601.

共引文献105

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部