期刊文献+

多光谱云分类技术在锋面云系中的应用 被引量:3

APPLICATION OF MULTI-SPECTRAL CLOUD CLASSIFICATION TECHNIQUE IN FRONTAL CLOUD SYSTEM
下载PDF
导出
摘要 将逐个修改聚类和模糊聚类的多光谱云分类技术应用于2002年6月10日03时锋面气旋云系的识别,并采用同一时次的地面常规观测与其进行了对比分析。结果发现,两种聚类方法对典型锋面气旋云系均有较好的识别能力,分类结果与天气概念模型云层分布情况一致;逐个修改聚类对组间差别较大的情况分类效果较好,而模糊聚类却对性质相近的类别有较好的识别;卫星图像分类结果与地面常规观测比较一致,但在层云、积云、层积云等性质较为相近类别的识别上存在一定差异。 In this paper a multi-spectral cloud classification technique based on stepwise cluster and fuzzy cluster using GMS-5 imagery data set was applied to recognize frontal cloud systems occurring 03 UTC on 10 June 2002. The results were compared with composite images, routine data and synoptic models, and the reasonability were analyzed. The results show that the typical cloud/surface types can be discriminated from synoptic systems by both classifiers, which agree with clouds distribution of typical synoptic models; most of satellite results are consistent with those of routine data.
出处 《热带气象学报》 CSCD 北大核心 2009年第1期66-72,共7页 Journal of Tropical Meteorology
基金 国家自然科学基金项目(40805012) 博士后基金(20070420577)共同资助
关键词 云分类 逐个修改聚类 模糊聚类 光谱特征 纹理特征 cloud classification stepwise cluster fuzzy clustersis data spectral feature textural feature
  • 相关文献

参考文献15

  • 1SHENK R T, NEFF R A. A multispectral cloud type identification method developed for tropical ocean area with Nimbus-3 MRIR measurements [J]. Mon Wea Rev, 1976, 104: 284-291.
  • 2ROSSOW W B, SCHIFFER R A. Advances in understanding clouds from ISCCP[J]. Bull Amer Soc, 1999, 80:2 261-2 287.
  • 3Meteorological product extraction and distribution service technical description EUM TD 11 [R], EUMETSAT, 2002.
  • 4DESBOIS M, SEZE G, SZEJWACH G. Automatic classification of clouds on METEOSAT imagery: Application to high-level clouds[J]. J Appl Meteor, 1982, 41: 401-412.
  • 5国家卫星气象中心.风云二号C卫星业务产品释用手册[R].
  • 6BAUM B A, TOUINKERE V, TITLOW J, et al. Automatic cloud classification of global AVHRR data using a fuzzy logic approach[J]. J Appl Mete, or, 1997, 36:1 519-1 535.
  • 7LI J, MENZEL W P, YANG Z, et al. High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements [J]. J Appl Meteor, 2003, 42: 204-226.
  • 8李俊,周凤仙.气象卫星台风云图的自动识别方法及其应用[J].应用气象学报,1992,3(4):402-409. 被引量:10
  • 9白慧卿,方宗义,吴蓉璋,郑君里.基于人工神经网络的GMS云图四类云系的识别[J].应用气象学报,1998,9(4):402-409. 被引量:27
  • 10师春香,瞿建华.用神经网络方法对NOAA-AVHRR资料进行云客观分类[J].气象学报,2002,60(2):250-255. 被引量:37

二级参考文献42

共引文献78

同被引文献31

  • 1曹俊武,刘黎平,葛润生.模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究[J].大气科学,2005,29(5):827-836. 被引量:89
  • 2刘黎平,钱永甫,王致君.用双线偏振雷达研究云内粒子相态及尺度的空间分布[J].气象学报,1996,54(5):590-599. 被引量:85
  • 3HASLER A F.Stereoscopic observations from satellites:An important new tool for the atmospheric sciences[J].Bull Amer Meteor Soc,1981,62:194-212.
  • 4FUJITA T T.Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms[J].J Meteor Soc,1982,60:355-368.
  • 5MACK R,HASLER A F,ADLER R F.Thunderstorm cloud top observations using satellite stereoscopy[J].Mon Wea Rev,1983,111(10):1949-1964.
  • 6WYLIE D P,MENZEL W P.Eight years of high cloud statistics using HIRS[J].J Climate,1999,12(1):170-184.
  • 7ROSSOW W B Measuring cloud properties from space.A review[J].J Climate,1989,2(3):201-213.
  • 8WIELICKI B A,PARKER B.On the determination of cloud cover from satellite sensors:The effects of sensor spatial resolutions[J].J Geophys Res,1992,97:12799-12823.
  • 9MINNIS P,LIOU K N,TAKANO Y.Inference of cirrus cloud properties using satellite-observed visible and infrared radiances PartⅠ:Parameterization of radiance[J].J Atmos Sci,1993,50(9):1279-1304.
  • 10MINNIS P,HECK P W,YOUNG D F.Inference of cirrus cloud properties using satellite-observed visible and infrared radiances PartⅡ:Verification of theoretical cirrus radiative properties[J].J Atmos Sci,1993,50(9):1305-1322.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部