期刊文献+

微尺度铸件室温蠕变性能的微尺度效应 被引量:1

Microscale Effects on Creep Properties of Microcastings at Room Temperature
下载PDF
导出
摘要 采用微金属型精密铸造工艺制备的微齿轮铸件整体尺寸在微米量级,无法进行常规拉伸蠕变试验。采用高精度的纳米压痕仪测试室温下微铸件的蠕变特征,基于压痕做功概念确定蠕变应变速率敏感指数m,结果表明:在微铸件齿顶和齿根处都获得了负的m值,分别为-0.13451和-0.12346,而宏观常规铸件的m值为0.40365,微铸件表现出明显的"微尺度效应",分析认为,微铸件快速凝固导致大量的Al原子以过饱和的形式固溶到Zn基体中,在压痕试验过程中Al原子作为溶质原子以管道机制扩散并钉扎位错,导致了动态应变时效(DSA)效应。 The overall size of the microcasting prepared is in the range of micron, whose creep behavior cannot be measured through conventional tensile creep test. Its creep characteristics at room temperature are measured by Berkovich nanoindentation tests of high precision. Then based on the concept of "work of indentation", the strain rate sensitivity of creep (m) is obtained from the load-depth curves. The results show that the m obtained in the top and root are -0.134 51 and -0.123 46 respectively. Whereas m in conventional castings is 0.403 65, and the obvious micro-scale effect are found. It is analyzed that massive A1 atoms induced by rapid solidification of micro-castings are solid solution existing in Zn base in the form of supersaturation. In this experiment, A1 atoms used as solute atoms are diffused by pipe diffusion, then pin dislocations. This results in dynamic strain aging (DSA).
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第2期178-183,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50475028)
关键词 微精密铸造 微铸件 蠕变速率敏感指数 纳米压痕 Micro precision casting Microcastings Strain rate sensitivity Nanoindentation
  • 相关文献

参考文献19

  • 1CHUDOBA T, RICHTER E Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results[J]. Surface and Coatings Technology, 2001,148(2-3): 191-198.
  • 2张建民,徐可为.纳米压痕法测量Cu的室温蠕变速率敏感指数[J].物理学报,2004,53(8):2439-2443. 被引量:11
  • 3BAUMEISTER G, MUELLER K, RUPRECHT R, et al. Production of metallic high aspect ratio microstructures by microcasting[J]. Microsystem Technologies, 2002, 8: 105-108.
  • 4BAUMEISTER G, RUPRECHT R, HAUSSELT J. Micro-casting of parts made of metal alloys[J]. Microsystem Technologies, 2004, 10: 261-264.
  • 5CHUNG S, PARK S, LEE L, et al. Replication techniques for a metal microcomponent having real 3D shape by microcasting process[J]. Mierosustem Technologies, 2005, 11: 424-428.
  • 6NOGUCHI H, ABE S. Study on microcasting(lst Report) [J]. Journal of the Japan Societyfor Precision Engineering, 2003, 69(3): 125-129.
  • 7李邦盛,任明星,傅恒志.微精密铸造工艺研究进展[J].铸造,2007,56(7):673-678. 被引量:15
  • 8MA X, YOSHIDA F. Rate-indentation hardness of a power-low creep solder alloy[J]. Applied Physics Letters, 2003, 82: 188-190.
  • 9ATKINS A G, SILVERIO A, TABOR D. Indentation hardness and the creep of solids[J]. Journal of the Institute of Metals, 1966, 94(1): 369-378.
  • 10STIWELL N A, TABOR D. Elastic recovery of conical indentations[J]. Proceedings of the Physical Society, 1961, 78: 169-179.

二级参考文献59

  • 1李志坚.微电子机械系统(MEMS)发展展望[J].电子科技导报,1997(1):2-9. 被引量:18
  • 2[1]Nix W D 1989 Metall. Trans. A 20 2217
  • 3[2]Mayo M J, Nix W D 1988 Acta Metall. 36 2183
  • 4[3]Mayo M J, Siegel R W, Narayanasamy A et al 1990 J. Mater.Res. 5 1073
  • 5[4]MayoMJ, Siegel R W, Liao Y X et al 1992 J. Mater. Res. 7973
  • 6[5]Raman V, Berriche R 1992 J. Mater. Res. 7 627
  • 7[6]Lucas A N, Oliver W C 1999 Metall. Mater. Trans. A 30 601
  • 8[7]Hannula S P, Stone D S, Li C Y 1985 Mater. Res. Soc. Symp.Proc. 40 217
  • 9[8]Zhang J M, Xu K W 2004 J. Test. Eval. 13 to be published
  • 10[10]Murarka S P 1997 Mater. Sci. Eng. R 19 87

共引文献33

同被引文献8

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部