期刊文献+

Zr-4合金应力松弛过程中的热激活变形与动态应变时效 被引量:6

THERMALLY ACTIVATED DEFORMATION AND DYNAMIC STRAIN AGING OF Zr-4 ALLOY DURING STRESS RELAXATION
下载PDF
导出
摘要 采用应力松弛实验研究了Zr-4合金的热激活变形与动态应变时效现象.结果表明,合金在应力松弛过程中的塑性变形速率随松弛时间的增加而减小,塑性变形速率和松弛结束时的应力降低比率在623 K附近都会出现最小值.对位错运动的激活体积分析发现,锆合金中位错运动的速率控制机制是位错克服溶质原子的障碍,动态应变时效会导致位错运动的激活体积增大, 623 K附近动态应变时效最为显著,位错密度会对合金的动态应变时效产生影响. The thermally activated deformation and dynamic strain aging (DSA) of Zr-4 were investigated by stress relaxation experiments in a broad temperature range. It is found that in the process of stress relaxation, the plastic deformation rate of the alloy decreases with the relaxation time, and this rate and the stress reduction ratio at the end of relaxation exhibit a minimum value at about 623 K. The activation volume associated with dislocation motion is found from the relationship between the stress and relaxation time. A noticeable maximum value appears around 623 K when the activation volume plotted against the temperature, which suggests that at this temperature, DSA is most pronounced. The strain dependence of the activation volume is analyzed. The rate control- ling deformation mechanism is identified as the overcoming of solute atoms by dislocations, and the dislocation density is found to have an influence on DSA.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2009年第2期173-177,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金资助项目50601024~~
关键词 ZR-4合金 应力松弛 热激活变形 动态应变时效 Zr-4 alloy, stress relaxation, thermally activated deformation, dynamic strain aging
  • 相关文献

参考文献13

  • 1Lee M H, Kim J H, Choi B K, Jeong Y H. J Alloys Compd, 2007; 428:99.
  • 2Ahn J S, Nam S W. Mater Lett, 1990; 9:413.
  • 3Lee K W, Kim S K, Kim K T, Hong S I. J Nucl Mater, 2001; 295:21.
  • 4Thorpe W R, Smith I O. J Nucl Mater, 1978; 78:49.
  • 5Armas A F, Alvarez I A, Moscato G. Scr Mater, 1996; 34: 281.
  • 6Nemat-Nasser S, Li Y L. Acta Mater, 1998; 46:565.
  • 7郭扬波,唐志平,程经毅.一种基于位错机制的动态应变时效模型[J].固体力学学报,2002,23(3):249-256. 被引量:13
  • 8Kocks U F, Argon A S, Ashby M F. Prog Mater Sci, 1975; 19:112.
  • 9Regazzoni G, Kocks U F, Follansbee P S. Acta Me,all, 1987; 35:2865.
  • 10Soo P, Higgins G T. Acta Metall, 1968; 16:177.

二级参考文献10

  • 1[1]Cheng JingYi, Nemat-Nasser S. A model for experimentally-observed high-strain-rate dynamic strain aging in titanium. Acta Mater, 2000, 48:3131~3144
  • 2[2]Mulford R A, Kocks U F. New observations on the mechanisms of dynamic strain aging and of Jerky flow. Acta Metallurgica, 1979, 27:1125~1134
  • 3[3]Beukel A Van Den, Kocks U F. The strain dependence of static and dynamic strain aging. Acta Metallurgica, 1982, 30:1027~1034
  • 4[4]Zerilli Frank J, Armstrong Ronald W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys, 1987, 61(5):1816~1825
  • 5[5]Zerilli Frank J, Armstrong Ronald W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. J Appl Phys, 1990, 68(4):1580~1591
  • 6[6]Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Mater, 1997, 45:907~919
  • 7[7]Hoge K G, Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum. Journal of Materials Science, 1977, 12:1666~1672
  • 8[8]Kocks U F. Kinetics of solution hardening. Metallurgical Transactions A,1985, 16A:2109~2129
  • 9[9]McCormick P G. A model for the Portevin-Le chatelier effect in substitutional alloys. Acta Metallurgica, 1972, 20:351~354
  • 10[10]Ke Ting-Sui. Internal friction and precipitation from the solid solution of N in tantalum. Physical Review, 1948, 74:914~916.

共引文献12

同被引文献43

  • 1李剑,郑子樵,陈大钦,李世晨,殷顺高,刘祖耀.Al-Cu合金应力时效的动力学研究[J].稀有金属,2005,29(4):539-544. 被引量:13
  • 2陈大钦,郑子樵,李世晨,陈志国,刘祖耀.外加应力对Al-Cu及Al-Cu-Mg-Ag合金析出相生长的影响[J].金属学报,2004,40(8):799-804. 被引量:35
  • 3彭开萍,陈文哲,钱匡武.3004铝合金的拉伸变形特征[J].机械工程材料,2005,29(12):13-16. 被引量:5
  • 4李劲风,郑子樵,李世晨,任文达,陈文敬.铝合金时效成形及时效成形铝合金[J].材料导报,2006,20(5):101-103. 被引量:34
  • 5LIN J, HO K C, DEAN T A. An integrated process for modeling of precipitation hardening and springback in creep age- forming[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1266-1270.
  • 6HO K C, LIN J, DEAN T A. Constitutive modelling of primary creep for age forming an aluminium alloy[J]. Journal of Materials Processing Technology, 2004, 153/154: 122-127.
  • 7HO K C, L1N J, DEAN T A. Modelling of springback in creep forming thick aluminum sheets[J]. International Journal of Plasticity, 2004, 20(4/5): 733-751.
  • 8LEVERS A. Creep forming a metallic component. US 2004154369[P]. 2003-01-23.
  • 9ZHU A W, STARKE E A JR. Materials aspects of age-forming of Al-xCu alloys[J]. Journal of Materials Processing Technology, 2000, 117(3): 354-358.
  • 10ZHU A W, CHEN J, STARKE E A JR. Precipitation strengthening of stress-aged Al-xCu alloys[J]. Acta Mater, 2000, 48: 2239-2246.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部