期刊文献+

球形压痕法评价材料屈服强度和应变硬化指数的有限元分析 被引量:23

FEA OF EVALUATING MATERIAL YIELD STRENGTH AND STRAIN HARDENING EXPONENT USING A SPHERICAL INDENTATION
下载PDF
导出
摘要 采用量纲分析法,建立了直径1 mm球形压头的无量纲函数.通过此无量纲函数和有限元计算,可推算金属材料的屈服强度和应变硬化指数.通过模拟,得到了屈服应变从0.00769到0.04范围的材料常数的拟合函数,并利用此拟合函数得到了屈服强度和应变硬化指数.通过模拟验证,此方法提高了计算精度并扩大了材料的计算范围.所获得的屈服强度平均误差是1.6%,应变硬化指数的平均误差12.6%. Dimensional analysis was constructed to derive the dimensionless functions of a spherical indenter with 1 mm in diameter. The function can be used to extract the yield strength and strain hardening exponent of metal materials by means of finite element analysis. The fitting functions used to analyze materials yield strength and strain hardening exponent within the yield strains ranging from 0.00769 to 0.04 were obtained by numerical simulation. It has been validated that the prediction accuracy is enhanced and the average errors of the yield strength and strain hardening exponent are 1.6% and 12.6%, respectively.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2009年第2期189-194,共6页 Acta Metallurgica Sinica
基金 中俄政府间科技合作资助项目20070634~~
关键词 有限元分析(FEA) 球形压痕 屈服强度 应变硬化指数 无量纲函数 FEA (finite element analysis), spherical indentation, yield strength, strain hardening exponent, dimensionless function
  • 相关文献

参考文献10

  • 1Suresh S, Alcala J, Giannakopoulos E. US Pat, US 6 247 355 B1, 2001.
  • 2Kwon D I, ChoiY, Lee Y H. US Pat, US 6 718 820 B2, 2004.
  • 3Hernot X, Bartier O, Bekouche Y, Bekouche Y, Abdi R E I, Mauvoisin G. Int J Solids Struct, 2006; 43:4136.
  • 4Matthews 3 R, Acta MetaU, 1980; 28:311.
  • 5Herbert E G, Pharr G M, Oliver W C, Lucas B N, Hay J L. Thin Solid Films, 2001; 398-399:331.
  • 6Cao Y P, Lu J, Acta Mater, 2004; 52:4023.
  • 7Cheng Y T, Cheng C M. J Appl Phys, 1998; 84:1284.
  • 8Chollacoop N W, PhD Thesis, Massachusetts Institute of Technology, Cambridge, 2004.
  • 9Dao M, Chollacoop N, Van Vliet K J, Venkatesh T A, Suresh S. Acta Mater, 2001; 49:3899.
  • 10Lee H L, Lee J H, Pharr G M. J Mech Phys Solids, 2005 53:2046.

同被引文献295

引证文献23

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部