期刊文献+

低压化学气相沉积技术制备锗反蛋白石三维光子晶体 被引量:2

Fabrication of Germanium Inverse Opal Three-dimensional Photonic Crystal by LPCVD
下载PDF
导出
摘要 采用溶剂蒸发对流自组装法将单分散SiO2微球组装形成三维有序胶体晶体模板,用低压化学气相沉积法填充高折射率材料锗,酸洗去除SiO2模板,获得了锗反蛋白石三维光子晶体.通过扫描电镜、X射线衍射仪和紫外-可见-近红外光谱仪对锗反蛋白石的形貌、成分、结构和光学性能进行了表征.结果表明:锗在SiO2微球空隙内具有较高的结晶质量,填充致密均匀.通过改变沉积工艺,可控制锗的填充率;制备的锗反蛋白三维光子晶体具有明显的光学反射峰,表现出光学带隙效应.测试的光学性能与理论计算基本吻合. Monodisperse silica microspheres were assembled into three-dimensional colloidal crystal template with long-ranged order by solvent vaporization convection self-assembly method. Low Pressure Chemical Vapour Deposition(LPCVD) method was used to fill the voids of silica colloidal crystals template with high refractive index material germanium, then silica colloidal crystals template was removed by an acid etching. Thus germanium three-dimensional inverse opal photonic crystal was obtained. The modality,component and structure of the resulted samples were characterized by scanning electron microscopy, X-ray diffraction and UV-VIS-NIR spectroscopy. Results show that germanium of high crystalline quality is homogeneously distributed inside the voids of silica template. The filling fraction of germanium can be controlled by changing the conditions of LPCVD. The samples have optic reflective apex and show the photonic band gap effects. The experiment optic capability is inosculated with the calculated one.
出处 《光子学报》 EI CAS CSCD 北大核心 2009年第2期281-284,共4页 Acta Photonica Sinica
基金 国家部委基金资助
关键词 锗反蛋白石 光子晶体 低压化学气相沉积 溶剂蒸发对流自组装 Germanium inverse opal Photonic crystal Low pressure chemical vapour deposition Solventvaporization convection self-assembly
  • 相关文献

参考文献7

  • 1YABLONOVITCH E. Inhibited spontaneous emission in solidstate physics and electronics[J]. Phys Rev Lett, 1987,58(20): 2059-2061.
  • 2JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett , 1987,58(23) :2486-2488.
  • 3XIA Younan, GATES B, YIN Yadong, et al. Monodispersed colloidal spheres: old material with new applications[J]. Adv Mater,2000,12(10) :693-716.
  • 4BUSCH K, JOHN S. Photonic band gap formation in certain self organizing systems[J]. Phys Rev E, 1998,58 (3) : 3896-3908.
  • 5BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1. 5 micrometres[J]. Nature, 2000,405(6785) :437-440.
  • 6李宇杰,谢凯,许静,龙永福.近红外光学带隙硅三维光子晶体的制备[J].材料导报,2006,20(6):129-131. 被引量:4
  • 7MIGUEZ H, CHOMSKI E, GARCIA-SANTAMARIA F, et al. Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition[J]. Adv Mater, 2001,13(21): 1634-1637.

二级参考文献8

  • 1Yablonovitch E.Inhibited spontaneous emission in solidstate physics and electronics[J].Phys Rev Lett,1987,58:2059
  • 2John S S.Localization of photons in certain disordered dielectric superlattices[J].Phys Rev Lett,1987,58:2486
  • 3Xia Younan,Gates,Byron,et al.Monodispersed colloidal spheres:old material with new applications[J].Adv Mater,2000,12(10):693
  • 4Busch K,John S.Photonic band gap formation in certain self-organizing systems[J].Phys Rev E,1998,58:3896
  • 5Jiang P,Bertne J F,et al.Single-crystal colloidal multilayers of controlled thickness[J].Adv Mater,1999,11:2132
  • 6Vlasov Y A,Bo Xiangzheng,Srurm J C,et al.On-chip natural assembly of silicon photonic bandgap crystal[J].Nature,2001,414:289
  • 7Miguez H,et al.Control of the photonic crystal properties of fcc packed submicrometer SiO2 spheres by sintering[J].Adv Mater,1999,10:480
  • 8Blanco A,et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres[J].Nature,2000,405:437

共引文献3

同被引文献26

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部