期刊文献+

基于贝叶斯网络SP算法的改进研究 被引量:2

Improvement of SP Algorithm Based on Bayesian Networks
下载PDF
导出
摘要 针对SP算法中利用优化组合处理稀疏候选集来评分得最优候选集,这样得到的每个节点的候选集为父节点集,从而容易导致最后的贝叶斯网络双向边较多,对双向边处理后还存在较多的反向边,从而提出了利用爬山算法处理稀疏候选集,得到新的算法SCHC,该算法减少了双向边的数量和提高了正确边的数量。 SP algorithm used optimization to deal with sparse candidate sets, scored the optimal .set as the candidate, so are the candidates for each node - parent node sets, thus easily lead to the final Bayesian network had more two-way edges, after dealed with two - way edge, there are still more reverse side. And put forward using hill-climing algorithm to deal with sparse candidate, sets,getting new algo-rithm SCHC. And the algorithm has reduced the number of two- way edges and increased the number of correct side.
出处 《计算机技术与发展》 2009年第3期155-157,192,共4页 Computer Technology and Development
基金 国家自然科学基金(39880032)
关键词 SP算法 稀疏候选集 贝叶斯网络 爬山算法 双向边 SP algorithm sparse candidate sets bayesian networks hill - climing algorithm Two- way edges
  • 相关文献

参考文献5

  • 1Cowell R G, Dawid A P, Lauritzen S L, et al. Probabilistie Networks and Expert Systems[ M]. [ s. l. ] :Springer, 1999.
  • 2Wessels L F A, vanSomeren E P, Reinder M J T. A comparison of genctic ncrwork models[ C]//In: Pacific Symposium on Biocomputing. Belligham: ETATS - UNIS, 2001 : 508 - 519.
  • 3Friedman N, Nachman I, Pe' er D. Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate"Algorithm[C]//In: Fifteenth Conference on Uncertainty in Artificial Intelligence ( UAI ). [ s. l. ] : Morgan Kaufmann, 1999: 206 - 215.
  • 4Tsamardinos I, Aliferis C F, Stamikov A. Time and Sample Effident Diseovery of Markov Blankets and Direct Causal Relations[C]//In: The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003). [s. l. ] :ACM,2003:673 - 678.
  • 5Tsamardinos I,Brown L E,Aliferis C F. The Max - Min Hill - Climbing Bayesian Network Structure Learning Algorithm [J]. Machine Learning, 2006,65:31 - 78.

同被引文献16

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部