期刊文献+

钽掺杂金红石型二氧化钛光催化分解水的析氧活性 被引量:1

Photocatalytic oxidation of water to O_2 over Ta-dopant of rutile TiO_2
下载PDF
导出
摘要 以钛酸丁酯为原料,用低温超声水解方法合成不同Ta掺杂浓度的金红石型TiO2光催化剂,采用XRD、PL、DRS、BET等技术进行了催化剂表征。在光源为高压汞灯和氙灯、Fe3+为电子受体、悬浮液pH值为2.0的条件下,考察Ta掺杂对金红石型TiO2的光催化分解水析氧活性的影响。结果表明:Ta掺杂量(质量分数)在1.0%~5.0%范围时,Ta掺杂没有改变金红石型TiO2的晶型,表面形成氧空位,在导带底附近形成施主能级,有利于光生电子和空穴的分离,掺杂催化剂光致发光强度与其光催化析氧活性的变化趋势一致;当Ta掺杂量在1.0%时,掺杂催化剂的光催化分解水析氧活性最高,紫外光和可见光下光催化分解水的析氧速率分别为130.4和69.6μmol/(L·h),比金红石型TiO2掺杂改性前的析氧速率分别提高14.6%和12.1%。 The photocatalyst of Ta-doped rutile TiO2 with different Ta doping concentrations were prepared by low temperature ultrasonic hydrolysis using tetrabutyl titanate(C16H3604Ti) as raw material. This photocatalyst was characterized by XRD, PL, DRS and BET. Under the condition of Fe3+ as electron acceptor, pH=2.0 with UV irradiation and visible radiation, the effects of various Ta doping concentrations on the photocatalytic oxidation activity of Ta doped futile TiO2 particles were investigated. The results show that with appropriate concentration ranging in 1.0%-5.0%, Ta can be doped into rutile TiO2 lattice without causing any change in rutile TiO2 crystal structure. Therefore, the surface oxygen vacancies and the donor energy level near the bottom of the conduction band lead to easier departure of photoinduced electrons from holes to achieve stronger photocatalytic activity. The highest photocatalytic oxygen evolution and PL Spectra intensity are achieved. When the concentration of Ta is 1.0%, the O2 evolution speeds are 130.4 and 69.6 umol/(L·h) under UV irradiation and visible radiation, which are 14.6% and 12.1% higher than those before doping, respectively.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2009年第2期360-365,共6页 The Chinese Journal of Nonferrous Metals
基金 国家高技术研究发展计划资助项目(2002AA327140) 湖南省科技计划资助项目(2006GK3067) 湖南省自然科学基金资助项目(08JJ3022)
关键词 金红石型TIO2 掺杂钽 光催化分解水 析氧 rutile titania Ta-doped photocatalytic water splitting oxygen evolution
  • 相关文献

参考文献16

  • 1HONDA K, FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37 38.
  • 2杨亚辉,陈启元,尹周澜,李洁,粱胜.Fe^(3+)和Cr^(3+)掺杂对K_4Nb_6O_(17)光催化活性的影响[J].中国稀土学报,2004,22(5):647-650. 被引量:10
  • 3BAMWENDA G R, UESIGI T, ABE Y. The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe^3+ and Ce^4+ as electron acceptors[J]. Applied Catalysis A: General, 2001, 205(1/2): 117-128.
  • 4BAMWENDA G R, ARAKAWA H. Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq^4+ and Feaq^3+ species[J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(1/2): 105 113.
  • 5BAMWENDA G R, ARAKAWA H. The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce^4+/Ce^3+[J]. Solar Energy Materials and Cells, 2001, 70(1): 1-14.
  • 6SAYAMA K, ARAKAWA H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J]. The Journal of Chemical Society: Faraday Transactions, 1997, 93(8): 1647 1654.
  • 7LEE S G, LEE S, LEE H I. Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger[J]. Applied Catalysis A: General, 2001, 207(1/2): 173-181.
  • 8WONG W K, MALA M A. Doped TiO2 for solar energy applications[J]. Solar Energy, 1986, 36:163-166.
  • 9CHOI W Y, TERMIN A, MICHAEL R H. The role of metal ion dopants in quantumsized TiO2 correlation between photo reactivity and charge carrier recombination dynamics[J]. J Phys Chem, 1994, 98: 13669-13672.
  • 10CUI H, D WIGHT K, WOLD A. Surface acidityand photocatalytic activity of Nb2O5/TiO2 photocatalysts[J]. Journal of Solid State Chemistry, 1995, 115: 187-191.

二级参考文献40

  • 1杨亚辉,陈启元,尹周澜,李洁,粱胜.Fe^(3+)和Cr^(3+)掺杂对K_4Nb_6O_(17)光催化活性的影响[J].中国稀土学报,2004,22(5):647-650. 被引量:10
  • 2高友良,陈启元,尹周澜,胡慧萍,李洁.氧空位对WO_3光催化析氧活性影响的研究[J].无机化学学报,2005,21(10):1510-1514. 被引量:12
  • 3Srinivasa Rao K, Madhuri K V, Uthanna S, et al. Materials Science and Engineering B, 2003,100:79-86
  • 4Esat Pehlivan, Fatma Z Tepehan, Galip G Tepehan. Solid State Ionics, 2003,165:105-110
  • 5Aguir K, Lemire C, Lollman D B B. Sensors and Actuators B, 2002,84:1-5
  • 6Gratian R Bamwenda, Hironori Arakawa. Applied Catalysis A, 2001,210:181-191
  • 7Sayama K, Yoshida R, Kusama H, et al. Chem. Phy. Lett.,1997,277:387-391
  • 8Bamwenda G R, Arakawa H. Solar Energy Materials & Solar Cells, 2001,70:1-14
  • 9张琦 李新军 李芳柏 etal.Wuli Huaxue Xuebao(Acta Phys.-Chim. Sin.),2004,20(5):507-511.
  • 10Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, (238): 37.

共引文献20

同被引文献16

  • 1杨亚辉,陈启元,尹周澜,李洁,粱胜.Fe^(3+)和Cr^(3+)掺杂对K_4Nb_6O_(17)光催化活性的影响[J].中国稀土学报,2004,22(5):647-650. 被引量:10
  • 2高友良,陈启元,尹周澜,胡慧萍,李洁.氧空位对WO_3光催化析氧活性影响的研究[J].无机化学学报,2005,21(10):1510-1514. 被引量:12
  • 3HONDA K,FUJISHIMA A.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
  • 4BAMWENDA G R,UESIGI T,ABE Y.The photocatalytic oxidation of water to O2 over pure CeO2,WO3,and TiO2 using Fe3+ and Ce4+ as electron acceptors[J].Applied Catalysis A:General,2001,205(1/2):117-128.
  • 5BAMWENDA G R,ARAKAWA H.Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species[J].Journal of Molecular Catalysis A:Chemical,2000,161(1/2):105-113.
  • 6BAMWENDA G R,ARAKAWA H.The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+[J].Solar Energy Materials and Cells,2001,70(1):1-14.
  • 7SAYAMA K,ARAKAWA H.Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J].The Journal of Chemical Society:Faraday Transactions,1997,93(8):1647-1654.
  • 8LEE S G.,LEE S,LEE H I.Photocatalytic production of hydrogen from aqueous solution containing CN-as a hole scavenger[J].Applied Catalysis A:General,2001,207(1/2):173-181.
  • 9WONG W K,MALA M A.Doped TiO2 for solar energy applications[J].Solar Energy,1986,36(2):163-166.
  • 10CHOI W,TERMIN A,MICHAEL R H.The role of metal ion dopants in quantum sized TiO2 correlation between photo reactivity and charge carrier recombination dynamics[J].J Phys Chem,1994,98(51):13669-13672.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部