期刊文献+

随机并行梯度下降湍流场光束净化的实时校正实验研究 被引量:3

Experimental Research for Real-Time Beam Cleanup in Turbulence Based on Stochastic Parallel-Gradient-Descent Method
原文传递
导出
摘要 自适应光学技术可用于补偿高能激光系统出射光束的波前畸变以改善光束质量。为研究随机并行梯度下降(SPGD)自适应光学方法用于光束净化的可行性,分别采用高速光电探测器和高速变形镜作为系统性能评价函数的测量器件和波前校正器件,搭建了迭代速率为100Hz的SPGD自适应光学系统,并且对通电电阻丝产生的湍流所造成的动态波前畸变进行了实时校正。实验结果显示,此套自适应光学系统能够对在4Hz以下频率范围内缓慢变化的动态波前畸变进行实时校正,针孔中远场光斑的能量提高2.2倍,稳定性提高1.4倍。这表明SPGD自适应光学系统用于光束净化是可行的。 Adaptive optics can be used to compensate wave-front aberrations of output beam from high-power laser system for improving beam quality. To investigate the feasibility of adaptive optics method based on the stochastic parallel gradient descent (SPGD) for beam cleanup, a SPGD adaptive optics system with iterative rate of 100 Hz is built up, in which a high-speed photodetector is used as the measurement device of the system's performance evaluation function, and a high-speed deformable mirror is served as the wave-front corrector. Dynamic wave-front aberrations caused by the heat flow turbulence of a resistance coil, are corrected in-real-time by the SPGD adaptive optics system. The experimental results show that the above-mentioned system can correct dynamic wave-front aberrations changing in the frequency range of 4 Hz below, resulting in both a 2.2-fold increase of the energy and a 1.4-fold increase of the stability of the far-field spot in the pinhole. It is indicated that the SPGD adaptive optics method is feasible for beam cleanup system.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第3期582-586,共5页 Acta Optica Sinica
基金 国家自然科学基金(60708029)资助课题
关键词 自适应光学 光束净化 随机并行梯度下降 动态畸变 针孔 adaptive optics beam cleanup stochastic parallel gradient descent SPGD) dynamic aberrations pinhole
  • 相关文献

参考文献10

  • 1M. A. Vorontsov, G. W. Carhart, J. C. Ricklin. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt. Lett., 1997, 22(10): 907--909.
  • 2M. A. Vorontsov, V. P. Sivokon. Stochastic parallel-gradient- descent technique for high-resolution wave-front phase distortion correction[J]. J. Opt. Soc. Am. A, 1998, 15(10): 2745-2758.
  • 3M. A. Vorontsov, G. W. Carhart, M. Cohen, G. Cauwenberghs et al.. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. J. Opt. Soc. Am. A, 2000, 17(8): 1440-1453.
  • 4T. Weyrauch, M. A. Vorontsov, T. G. Bifano et al.. Microscale adaptive optics: wavefont control with a μ-mirror array and a VLSI stochastic gradient descent controller [J]. Appl. Opt., 2001, 40(24): 4243--4253.
  • 5梁永辉,王三宏,龙学军,于起峰.随机并行梯度下降光束净化实验研究[J].光学学报,2008,28(4):613-618. 被引量:21
  • 6Liang Yonghui, Wang Sanhong, Long Xuejun et al.. Beam cleanup technique based on stochastic parallel gradient descent wavefront control method[C]. SPIE, 2007, 6823: 68230H.
  • 7M. A. Vorontsov, G. W. Carhart. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. J. Opt. Soc. Am. A, 2000, 17(8): 1440- 1453.
  • 8V. I. Polejaev, P. R. Barbier, G. W. Carhart et al.. Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique[C]. SPIE, 1999, 3760:88-95.
  • 9T. Weyrauch, M. A. Vorontsov, T. G. Bifanoet al.. Adaptive optics system with micromachined mirror array and stochastic gradient descent controller[C]. SPIE, 2000, 4124: 178-188.
  • 10G. W. Carhart, G. J. Simer, M. A. Vorontsov. Adaptive compensation of the effects of non-stationary thermal blooming based on the stochastic parallel gradient descent optimization method[C]. SPIE, 2003, 5162:28-36.

二级参考文献10

  • 1苏毅.高能激光系统中的物理问题[J].物理,2005,34(8):583-588. 被引量:10
  • 2R. A. Muller, A. Burlington. Real-time correction of atmospherically degraded telescope images through image sharpening[J]. J. Opt. Soc. Am., 1974, 64(9): 1200-1210.
  • 3A. Buffington, F. S. Crawford, R. A. Mulleret al.. Correction of atmospheric distribution with an image-sharpening telescope [J]. J. Opt. Soc. Am., 1977, 67(3): 298-303.
  • 4M. A. Vorontsov, G. W. Carhart, J. C. Ricklin. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt. Lett., 1997, 22(10): 907-909.
  • 5M. A. Vorontsov, V. P. Sivokon. Stochastic parallel-gradientdescent technique for high-resolution wave-front phase-distortion correction[J]. J. Opt. Soc. Am. A, 1998, 15(10): 2745-2758.
  • 6M. A. Vorontsov, G. W. Carhart, M. Cohen a al.. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. J. Opt. Soc. Am. A, 2000, 17(8): 1440-1453.
  • 7T. Weyrauch, M. A. Vorontsov, T. G. Bifano et al.. Mieroseale adaptive optics: wavefront control with a μ-mirror array and a VLSI stochastic gradient descent controller[J]. Appl. Opt. , 2001, 40(24): 4243-4253.
  • 8Thomas Weyrauch, Mikhail A. Vorontsov. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication appliealions[J]. Appl. Opt., 2005, 44(30): 6388-6401.
  • 9Thomas Weyrauch, Mikhail A. Vorontsov. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication appliealions[J]. Appl. Opt., 2005, 44(30): 6388-6401.
  • 10Thomas Weyrauch, Mikhail A. Vorontsov. Free-space laser communications with adaptive optics: atmospheric compensation experiments[J]. J. Opt. Fiber Cornrnun. Rep. , 2004, 1 : 355-379.

共引文献20

同被引文献220

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部