期刊文献+

可压缩球膜的膨胀和分叉 被引量:1

INFLATION AND BIFURCATION OF A COMPRESSIBLE SPHERICAL MEMBRANE
下载PDF
导出
摘要 利用大变形迭加小变形的一般方法详细考察了可压缩球膜的膨胀和分叉问题.得到了可压缩球膜分叉的控制微分方程组,并通过求解非线性偏微分方程组,给出了不同情形的分叉模式及相应的分叉判据,但为了与Alexander的实验对比,只认为01模式的分叉解在物理上是可行的.结果表明:可压缩球膜分叉解的控制微分方程组与不可压缩时非常相似,都只有3个独立的弹性系数,但弹性系数的定义是不同的;从理论上证明了可压缩球膜的分叉也是在内压达到极大值之后发生的,且在球膜的膨胀过程中,当内压达到极大值后,球膜的形状不再是标准的球形,而是上半球的厚度变大,下半球厚度变小,此时球膜分叉了,这与实验结果是一致的. With the help of small deformations superposed on large ones,the inflating and bifurcation of a compressible spherical membrane were studied. The controlling partial differential equations were obtained. According to seeking the solution of the equations, all kinds of the bifurcation models and criteria were given. In order to compare with the Alexander's test,only the 01 model was assumed to be possible. The results indicated that the controlling differential equations of the compressible situation were very sim- ilar with the incompressible case, both are with three independent elastic coefficients, although their definitions are different. It was proved theoretically that bifurcation happens after the internal pressure reached the critercal value. In the inflating process of a spherical membrane, the spherical shape was no longer kept after the internal pressure reached the critercal value,which implies that the spherical membrane bifurcated. This phenomenon is same as the experimental result.
出处 《固体力学学报》 CAS CSCD 北大核心 2009年第1期42-47,共6页 Chinese Journal of Solid Mechanics
基金 黑龙江省自然科学基金项目(A2004-08)资助
关键词 可压缩 球膜 膨胀 分叉 compressibility, spherical membrane, inflation, bifurcation
  • 相关文献

参考文献14

  • 1Beatty M F. Topics in finite elasticity: hyperelasticity of rubber, elastomer, and biological tissues- with example [J]. Applied Mechanics Review, 1987,40 : 1699- 1734.
  • 2Alexander H. Tensile instability of initially spherical balloons [J]. International Journal of Engineering Science,1971,9(1) : 151-162.
  • 3Green A E, Adkins J E. Large Elastic Deformation and Non-linear Continuum Mechanics[M]. England: Oxford University Press, 1960 : 99-112.
  • 4Abeyaratne R, Horgan C O. The pressurized hollow sphere problem in finite elastostatics for a class of compressible materials [J]. International Journal of Solids and Structures, 1984,20 (8): 715-723.
  • 5Chung D T, Horgan C O, Abeyaratne R. The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials [J]. International Journal of Solids and Structures, 1986,22 (12) : 1557-1570.
  • 6Shield R T. On the stability of finitely deformed elastic membranes. Part Ⅰ : Stability of a uniformly deformed plane membrane [J]. Zeitschrift far Angewandte Mathematik und Physik, 1971,22 (6) : 1016- 1028.
  • 7Shield R T. On the stability of finitely deformed elastic membranes. Part Ⅱ :Stability of inflated cylindrical and spherical membranes [J]. Zeitsehrift fur Angewandte Mathematik und Physik,1972,23(1):16-34.
  • 8Haughton D M, Ogden R W. On the incremental equations in non-linear elasticity-Ⅰ. Membrane theory [J]. Journal of the Mechanics and Physics of Solids, 1978,26(2) : 93-110.
  • 9Haughton D M, Ogden R W. On the incremental equations in non-linear elasticity-Ⅱ. Bifurcation of pressurized spherical shells[J]. Journal of the Mechanics and Physics of Solids,1978,26(2):111-138.
  • 10Haughton D M, Orr A. On the eversion of incompressible elastic cylinders [J]. International Journal of Non-linear Mechanics, 1995,30 (2) : 81-95.

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部