期刊文献+

Eshelby问题中棱上各点位移梯度的跳跃

THE JUMP OF DISPLACEMENT GRADIENT ACROSS THE EDGE IN THE ESHELBY’S PROBLEM
下载PDF
导出
摘要 利用调和函数的积分方法,来研究各向同性材料非光滑界面Eshelby问题中,棱上各点位移梯度的跳跃,最终获得棱上各点应力张量的跳跃值.首先讨论Eshelby位移场的连续性,并将棱上各点位移梯度场的连续部分和跳跃部分分离开;再由各向同性的Green函数获得位移梯度场和应力场在核与基体间跳跃的显式表示.最后对应力场在界面上的跳跃进行讨论. The integral method of harmonic function is employed to study the jump of displacement gradient across the edge in the Eshelby's problem. Firstly,the continuity of displacement is discussed and then the displacement gradient field is divided into continuous and discontinuous parts. Secondly, using Green function of isotropic body,the explicit expression of the displacement gradient field and stress field's difference between core and foundation can be expressed explicitly. Finally,the jump of stress field across the unsmoothed interface is discussed in detail.
出处 《固体力学学报》 CAS CSCD 北大核心 2009年第1期61-64,共4页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10602001,10702077) 辽宁省教育厅科学研究计划项目(2004F051)资助
关键词 Eshelby问题 位移梯度 GREEN函数 本征应变 各向同性 Eshelby's problem,the displacement gradient,Green functions,eigenstrain,istropic body
  • 相关文献

参考文献6

  • 1Eshelby J D. The determination of the elastic field of an ellipsoidal and related problems [J]. Proceedings of the Royal Society, 1957, A241 : 376-396.
  • 2Eshelby J D. The elastic field outside an ellipsoidal inclusion [J]. Proceedings of the Royal Society, 1959, A252 : 561-569.
  • 3Eshelby J D. Elastic Inclusion and Inhomogeneities [C],in Snddon I. N. and Hill R. eds. Progress in Solid Mechanics, 1961 : 89-140.
  • 4Hill R. Discontinuity Relations in Mechanics of Solids [C]. in Snddon I. N. and Hill R. eds. Progress in Solid Mechanics, 1961: 245-276.
  • 5Mura T. Micromechanics of Defects in Solids [M]. 2nd ed, Dordreeht : Martinus Nijhoff, 1987 : 38-40.
  • 6赵宝生 王敏中.Eshelby问题中位移梯度在界面间的跳跃.固体力学学报,2003,:261-265.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部