期刊文献+

一种高效的局部径向基点插值无网格方法 被引量:4

AN EFFICIENT MESHLESS METHOD THROUGH LOCAL RADIAL POINT INTERPOLATION
下载PDF
导出
摘要 提出了一种弹性动力分析的高效局部径向基点插值无网格方法(MLRPI).该方法采用径向基点插值形函数近似解变量,运用局部Petrov-Galerkin法推导出了相应的离散方程,并根据波动模拟的精度要求,得到某一结点的动力方程.然后采用Newmark常平均加速度法和中心差分法相结合的显式积分格式进行时域积分,得到每个自由度的一种解耦递推格式.最后,对一平面应变问题进行了求解,比较了该文提出的解耦MLRPI方法、常规MLRPI方法和ANSYS有限元方法的精度和计算时间,结果表明解耦MLRPI方法与常规MLRPI方法的精度相当,但计算效率大大提高. This paper presents an efficient meshless method through local radial point interpolation (MLRPI) for analyzing elastic dynamic response. The method involves a lumped--mass MLRPI and explicit integration procedures, and avoids solving algebra equation sets required by ordinary meshless methods. The shape functions possess the Kronecker delta function property, thus no additional treatment is needed to impose essential boundary conditions. Numerical examples show that the proposed deeoupled MLRPI has the comparable accuracy with the ordinary MLRPI and the ANSYS software, but has high efficiency.
出处 《固体力学学报》 CAS CSCD 北大核心 2009年第1期100-105,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(50508016) 973项目(2007CB714201) 地震工程与工程振动开放实验室基金资助
关键词 径向基点插值法 高效MLRPI 局部Petrov-Galerkin法 显式积分 efficient meshless method, radial point interpolation method, local Petrov-Galerkin method, explicit integration scheme
  • 相关文献

参考文献15

  • 1Gingold R A, Moragham J J. Smooth particle hydrodynamics:Theory and applications to non spherical stars [J]. Monthly Notices of the Royal Astronomocal Society, 1977,181 : 375-389.
  • 2Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements [J]. Computational Mechanics, 1992,10 : 307-318.
  • 3Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [ J]. International Journal for Numerical Methods in Engineering, 1994,37 : 229-256.
  • 4Liu W K ,Jun S, Zhang Y. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Engineering, 1995,20 : 1081-1106.
  • 5Duarte C A,Oden J T. An h-p adaptive method using clouds[J]. Computer Methods in Applied Mechanics Engineering, 1996,139 : 237-262.
  • 6Melenk J M, Babuska I. The partition of unity finite element methods: Basic theory and application [ J]. Computer Methods in Applied Mechanics Engineering,1996,139:263-288.
  • 7Atluri S N, Shen S P. The Meshless Local PetrovGalerkin (MLPG) Method[M]. Encino: Tech Science Press,2002.
  • 8Atluri S N, Zhu T. A new meshless local PetrovGalerkin(MLPG) approach in computational mechanics [J]. Computational Mechanics, 1998,22 : 117-127.
  • 9Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43:839-887.
  • 10Liu G R, Gu Y T. A point interpolation method for two-dimensional solids[J]. International Journal for Numerical Methods in Engineering, 2001, 50: 937- 951.

共引文献7

同被引文献36

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部