期刊文献+

一个新的最优简单规则挖掘算法

New Algorithm for Optimal Minimal Rules Mining
下载PDF
导出
摘要 关联规则的提取是知识发现和数据挖掘领域中的重要问题,粗集理论是研究规则挖掘的重要的数学工具.本文研究信息系统中最优简单关联规则挖掘算法.本文利用信息关联矩阵中元素特性,对其进行变换,直接从中发现关联规则潜在的条件元,以此作为规则挖掘算法的基础.本文的算法简单直观,能挖掘出信息系统中所有最优简单规则,而且有效地避免了通常属性约简过程中的NP-hard问题.本文以一个实例证明本方法的有效性. Acquisition for association rules of information systems is an important problem of knowledge treatment and data mining, and rough sets theory is an important mathematical tools of rules mining. The paper researches the algorithm for optimal minimal mining rules in information systems. By use of the characteristic of elements in association matrix, the algorithm proposed in this paper can find the conditional elements of potential association rules including in the information systems after transforming the property elements of association matrix. The algorithm can directly simplify the mining progress of optimal minimal rules of information systems, and effectively void the NP-hard problem often occurring in the attributes reduction of information systems. An example is also given to prove the efficient lastly.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第3期417-420,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60474072)资助 广东省自然科学基金项目(04009465)资助
关键词 最简规则 粗集理论 关联矩阵 minimal rules rough sets theory association matrix
  • 相关文献

参考文献5

二级参考文献23

  • 1[1]Chen Ming-Syan, et al. Data Mining: An Overview from a Database Perspective. IEEE Trans. on Knowledge and Data Ehgineering. 1998,8(6) :866~883
  • 2[2]Pawlak Z. Rough sets. Intl. J. of Computer and Information Science, 1982,11(5) :341~356
  • 3[3]Ziarko W. Variable Precision Rough Set Model. J. of computer and system sciences. 1993,46: 39~59
  • 4[4]Pawlak Z. Rough set: Theoretical Aspects of Reasoning About Data. Kluwer Academic ,Dordrecht ,The Netherlands, 1991
  • 5[5]Guan J W,Bell D A. Rough computational methods for information systems. Artificial Intelligence. 1998,105: 77~ 103
  • 6[6]Pawlak Z,et al. Rough Sets. Communication of The ACM. 1995,38(11) :89~91
  • 7[7]Chan Chien-Chung. A rough set approach to attribute generalization in data mining. Journal of Information Sciences, 1998,107:169~176
  • 8[8]Bonikowski Z,et al. Extensions and intentions in the rough set theory. Journal of Information Sciences. 1998,107:149~167
  • 9Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982,11 : 341~ 356
  • 10Pawlak Z. Rough Sets Theory and It′s Application to Data Analysis [J] .Cybernetics Systems, An International Journal, 1998,29:661~688

共引文献306

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部