期刊文献+

椭圆曲线密码VLSI实现的定时攻击与防护

Timing Attacking and Counteracting on VLSI Implementation of Elliptic Curve Cryptography
下载PDF
导出
摘要 针对一种基于特征GF(2m)域的椭圆曲线密码(ECC)VLSI实现进行定时攻击分析,结果表明采用DA(Double Add)算法的ECC实现,可能泄漏密钥的汉明重量和其他电路秘密信息.在此基础上,利用统计分析提出一种引入随机延时来掩蔽时间特征的防护方法.攻击试验结果表明,该方法能够以4个有限域模乘运算模块的代价有效地增强ECC实现的抗定时攻击性. This paper describes a timing attack against a VLSI implementation of elliptic curve cryptography (ECC) over GF (2^m). The algorithm of DA (Double Add) used for the scalar multiplication of ECC, is vulnerable to timing attack, and it reveals an amount of information such as the hamming weight of the key and other secrecies. By statistical analyses, a protected implementation by random masking timing characteristics is presented. The attacking results show ,that the implementation can enhance the security of the cryptosystem at the cost of 4 modular multipliers.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第3期437-440,共4页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2006AA01Z226)资助 华中科技大学校科学研究基金项目(2006Z011B)资助 2007年新世纪优秀人才支持计划项目(NCET-07-0328)资助
关键词 椭圆曲线密码 点乘运算 定时攻击 时间特征 ECC scalar multiplication timing attack timing characteristics
  • 相关文献

参考文献12

  • 1Miller V. Uses of elliptic curves in cryptography[Z]. Advances in Cryptology Crypto 85, LNCS218, 1986 : 417-426.
  • 2Koblitz N. Elliptic curve cryptosystems [J ]. Mathematics of Computation, 1987, 48: 203-209.
  • 3Akashi Satoh, Kohji Takano. A scalable dual-field elliptic curve cryptographic processor[J]. IEEE Transaction on Computers, 2003, 52(4): 449-460.
  • 4Sangook Moon, Jaemin Park, Yongsurk Lee. Fast VLSI arithmetic algorithms for high-security elliptic curve cryptographic applications[J]. IEEE Transaction on Consumer Electronics, AUGUST 2001, 47(3)~ 700-708.
  • 5Philip H W Leong, Ivan K H Leung. A microcoded elliptic curve processor using FPGA technology[J]. IEEE Transactions on Very Large Scale Integration (V'LSI) Systems, 2002, 10 (5):617-712.
  • 6Buysschaert P, De Mulder E, et al. Electromagnetic analysis attack on an FPGA implementation of an elliptic curve cryptosystem [C ]. In Proceedings of EUROCON, 2005, 10(2): 1879-1882.
  • 7Kunio, Hikaru, Mitsuari. Multiple scalar-multiplication algorithm over elliptie eurve[J]. Ieiee Trans. Inf: Syst, February 2001, 84(2) :45-48.
  • 8Standards for Efficient Cryptography. Sec 1 : elliptic curve cryptography certicom research contact[Z]. Secg-talk@jlists. certicom. com, September 20,2000, Version1. 0.
  • 9Standards for Efficient Cryptograpgy. Sec Z: recommended elliptic curve domain parameters[Z]. Certicom Research Contact: secg-talk@lists, certicom, com. September 20,2000, Version 1. 0.
  • 10Jerome Solinas. Effieient arithmetic on koblitz curves[Z]. Designs, Codes and Cryptography, 2000, 19:195-249.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部