期刊文献+

BP数字识别自动监控系统 被引量:5

Automatic Monitoring System of BP Digital Recognition
下载PDF
导出
摘要 设计并实现了磁控溅射仪自动监控系统,对实验过程进行自动监控并记录实验数据,由服务器主控程序监控实验,存储并识别数字数据,识别过程是调用Matlab语言编写的识别系统生成的动态链接库,用BP神经网络训练神经元来进行识别,可以由客户端主控程序调用并查看实验数据曲线,实现实时的远程监控,解决了磁控溅射仪没有数据输出接口不方便记录实验数据的困难及实验过程中高辐射对人体危害的问题.整个系统识别效率高,速度快,准确性高,自动监控实验过程,具有很高的实用价值和应用前景. This paper describes the automatic monitoring system about the magnetron sputtering apparatus, tne system can monitor the experiment process and record experiment data automatically. Main control programming of the Server can storage and recognize the digital data, The recognition process was fulfilled by calling the dynamic link library compiled in Matlab language. The dynamic link library uses BP neural network to train neurons for the recognition. At the same time, the client programming can call and check the experiment data curve. It can achieve real-time remote monitoring. The paper solves the problems of inconvenient data records of the magnetron sputtering apparatus for the absence of data output interface and the high radiation on the human body. The entire system is efficient in recognition, speedy, precisely and has the function of automatic monitoring during the experiment process. So it has very high practical value and prospects.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第3期503-506,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金青年基金项目(60603031)资助 教育部博士学科点专项科研基金项目(20060183044)资助 吉林省技术发展计划项目基金项目(20050527)资助
关键词 磁控溅射仪 神经网络 数字识别 自动监控系统 magnetron sputtering apparatus neural networks digital recognition automatic monitoring system
  • 相关文献

参考文献3

二级参考文献43

  • 1Lee C C, Degyves J P. Color image processing in a cellular neu-rid-network environment [ J ]. IEEE Transactions on Neural Networks, 1996,7(5) :1086 - 1098.
  • 2Clarke L P, Qian W. Fuzzy-logic adaptive neural networks for nuclear medicine image restoration [A]. The 20th Annual International Conference on Engineering in Medicine and Biology Society[C]. 1998,vol. 3. 1363 - 1366.
  • 3Qian W, Clarke L P. Wavelet-based neural network with fuzzylogic adaptivity for nuclear image restoration [J]. Proceedings of the IEEE, 1996,84(10) :1458 - 1473.
  • 4Cheung H N, Bouzerdoum A, Newland W. Properties of shunting inhibitory cellular neural networks for colour image enhancement[ A]. The 6th International Conference on Neural Information Processing [ C]. 1999 ,vol. 3. 1219 - 1223.
  • 5Kondo K, Iguch M, Ishigaki H, et al. Design of complex-valued CNN filters for medical image enhancement [ A ]. IFSA World Congress and 20th NAFIPS International Conference [C]. 2001,vol. 3.1642 - 1646.
  • 6Ahmed F, Gustafson S C, Karim M A. High-fidelity image interpolation using radial basia function neural networks [ A ]. Aerospace and Electronics Conference [ C ]. 1995,vol. 2. 588 -592.
  • 7Sun Y. Hopfield neural network based algorithms for image restoration and reconstruction I algorithms and simulations [ J ].IEEE Transactions on Signal Processing, 2000,48 ( 7 ) : 2105-2118.
  • 8Sun Y. Hopfield neural network based algorithms for image restoration and reconstruction II algorithms and simulations [ J ].IEEE Transactions on Signal Processing, 2000,48 ( 7 ) : 2105-2118.
  • 9Perry S W, Wyber R J. A Hopfield neural network approach for the reconstruction of wide-bandwidth sonar data. Neural Networks for Signal Processing, 2000,2:876 -885.
  • 10Dony R D, et al. Neural network approaches to image compression [J]. Proc IEEE, 1995,83:288 -303.

共引文献54

同被引文献17

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部