期刊文献+

模糊环境下可控提前期供应链库存优化的Stackelberg模型研究 被引量:2

Research on Stackelberg Model of Supply Chain Inventory Optimization with Controllable Lead Time and Fuzzy Circumstances
下载PDF
导出
摘要 为了有效地缩短提前期与降低库存成本,研究了模糊环境下可控提前期的供应链库存优化问题。利用三角形模糊数描述需求的不确定性,建立了一类模糊需求条件下可控提前期供应链库存优化的Stackelberg模型。利用三角形模糊数描述成本系数的不确定性,建立了模糊成本系数条件下可控提前期供应链库存优化的Stackelberg模型,并提出利用均值面积度量法来解模糊化。通过数值分析来验证两类模型的优化效果。 To shorten lead time and reduce inventory cost, the supply chain inventory optimization problems with controllable lead time and fuzzy circumstances are studied. By using triangular fuzzy number to describe the uncertainty of demand, a kind of supply chain inventory optimization model with controllable lead time and fuzzy demand under Staekelberg theory is proposed. By using triangular fuzzy number to describe the uncertainty of inventory cost parameter, a kind of supply chain inventory optimization model with controllable lead time and fuzzy cost parameter under Staekelberg theory is also proposed. And the mean area measure method is used to solve the fuzzy problems. At last the optimization effect of these two models is manifested by numerical test.
出处 《运筹与管理》 CSCD 北大核心 2009年第1期54-59,85,共7页 Operations Research and Management Science
基金 广东省哲学社会科学"十一五"规划基金资助项目(06003) 广东省自然科学基金(05006576) 广东省软科学基金资助项目(2006B70101014 2007B07090031) 华南理工大学SRP学生计划
关键词 供应链 可控提前期 模糊需求 模糊成本系数 supply chain controllable lead time fuzzy demand fuzzy cost parameter
  • 相关文献

参考文献10

  • 1Tersine R J, Hummingbird E A. Lead-time reduction: the search for competitive advantage[ J]. International Journal Of Operations and Production Management, 1995, 15 (2) : 8-18.
  • 2Liao C J, Shyu C H. An analytical determination of lead time with normal demand[ J]. International Journal of Operations and Production Management, 1991, 11(9):72-78.
  • 3Ben-Daya M, Raouf A. Inventory models involving lead time as decision variable[ J]. Journal of the Operational Research Society, 1994, (45): 579-582.
  • 4Ouyang L Y, Yen N C, Wu K S. Mixture inventory model with backorders and lost sales for variable lead time[ J]. Journal of the Operational Research Society, 1996, 47: 829-832.
  • 5Ouyang L Y, Chuang B R. Stochastic inventory model involving variable lead time with a service level[ J]. Yugoslav Journal of Operations Research, 2000, 10 ( 1 ) : 81 - 98.
  • 6Pan J C H, Yang J S. A study of an integrated inventory with controllable lead time[ J]. International Journal of Production Research, 2002, 40 : 1263- 1273.
  • 7Ouyang L Y, Chuang H C. The variable lead time stochastic inventory model with a fuzzy backorder rate[ J]. Journal of the Operational Research Society of Japan, 2001, 44 ( 1 ) : 19-33.
  • 8Chang H C, Yao J S, Ouyang L Y. Fuzzy mixture inventory model with variable lead-time based on probabilistic fuzzy set and triangular fuzzy number[ J]. Mathematical and Computer Modelling, 2004, 39 (2,3) : 287-304.
  • 9Chang H C, Yao J S, Ouyang L Y. Fuzzy mixture inventory model involving fuzzy random variable lead time demand and fuzzy total demand. European Journal of Operational Research, 2006,169 (1) : 65-80.
  • 10叶飞,李怡娜.含服务水平约束的可控提前期供应链Stackelberg模型与协调机制研究[J].管理学报,2008,5(1):70-77. 被引量:6

二级参考文献10

  • 1KIM D H,PARK K S.Inventory Model with a Mix-ture of Lost Sales and Time-Weighted Backorders[].Journal of the Operational Research Society.1985
  • 2AZOURY K S,BRILL P H.Analysis of Net Invento-ry in Continuous Review Models with Random LeadTime[].European Journal of Operational Research.1992
  • 3CHIU H N.HEURISTIC Periodic Review Perishable Inventory Model with Lead Times[].InternationalJournal of Production Economics.1995
  • 4TANG O,GRUBBSTRo M R W.The Detailed Coor-dination Problem in a Two-level Assembly Systemwith Stochastic Lead Times[].International Journalof Production Economics.2003
  • 5LIAO C J,SHYU C H.An Analytical Determinationof Lead Time with Normal Demand[].InternationalJournal of Operations and Production Management.1991
  • 6PAN J C H,YANG J S.A Study of an Integrated In-ventory with Controllable Lead Time[].Interna-tional Journal of Production Research.2002
  • 7CHU P,YANG Kuo-Lung,CHEN P S.ImprovedInventory Models with Service and Lead Time[].Computers and Operations Research.2005
  • 8Ben-dayya M,Raouf A.Inventory models involving lead time as decision variable[].Journal of Operational Research Society.1994
  • 9L. Y. Ouyang,N. C. Yeh,K. S. Wu.Mixture inventory model with backorders and lost sales for variable lead time[].Journal of the Operational Research Society.1996
  • 10Chang, H. C,Liang, Y. O,Wu, K. S,and Ho, H. C.Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction[].European Journal of Operational Research.2006

共引文献5

同被引文献24

  • 1傅玉颖,潘晓弘.不确定情况下基于模糊集理论的库存管理研究[J].系统工程理论与实践,2005,25(9):54-58. 被引量:22
  • 2戴更新,侯云章,于庆东.基于随机提前期的二级库存系统的优化方法[J].数学的实践与认识,2006,36(3):52-57. 被引量:11
  • 3Tersine R J.Principles of inventory and materials management[M].New York: North-Holland, 2007.
  • 4Liao C J, Shyu C H.An analytical determination of lead time with normal demand[J].International Journal of Operations & Production Management, 1991,11:72-78.
  • 5Foote B,Kebriaei N,Kumin H.Heuristic policies for inventory ordering problems with long and randomly varying lead times[J].Joumal of Operations Management, 1988,7(4) : 115-124.
  • 6Ouyang L Y, Yen N C, Wu K S.Mixture inventory model with backorders and lost sales for variable lead time[J]. Journal of the Operational Research Society, 2006, 47: 829-832.
  • 7Moon I, Choi S.A note on lead time and distributional assumptions in continuous review inventory models[J]. Computers & Operations Research,1998,25: 1007-1012.
  • 8Banerjee A.A joint economic-lot-size model for purchaser and vendor[J].Decision Sciences, 1986,17: 292-311.
  • 9Goyal S K.A joint economic-lot-size model for purchaser and vendor: a comment[J].Decision Sciences,2008, 19: 236-241.
  • 10BakerR C,Urban T L.A deterministic inventory system with an inven-tory level dependent demand rate[J].Operational Research Society,1988,39:823-831.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部