期刊文献+

支持向量机在提升机故障诊断中的应用研究 被引量:2

Study and application of support vector machines in fault diagnosis of hoist
原文传递
导出
摘要 鉴于支持向量机的优越性及提升机的故障特点,提出将支持向量机应用到提升机的故障智能诊断中。该方法专门针对小样本集合设计,能够在小样本情况下获得较大的推广能力,而且模型简单。首先对采集的故障信号采取信息融合方式进行特征提取,以获得特征向量。在此基础上通过多类分类支持向量机对提升机故障进行分类,建立故障诊断模型。试验结果表明,该方法具有较高的诊断精度,取得了比较令人满意的结果。 In view of the superiority of support vector machines and the characteristics of the fault hoist. A novel.fault diagnosis method based on support vector machines is presented in this paper. The method is special designed for small sample set, and commendable generaliza- tion ability can be obtained. Firstly feature information is extracted via information combination method, then support vector machines is adopted to realize patter recognition and correlation. Finally, on the basis of this, the fault diagnosis model is established through the SVM multi-classification. The method ensures the higher accuracy in the diagnosis. The results are satisfactory and prove this method is effective and commendable.
出处 《矿山机械》 北大核心 2009年第5期49-52,共4页 Mining & Processing Equipment
关键词 支持向量机 信息融合 故障诊断 提升机 support vector machines information combination fault diagnosis hoist
  • 相关文献

参考文献8

  • 1李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 2Vapnik V N 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,1999..
  • 3Xiangying Wang, Yixin Zhong. Statistical learning theory and state of the art in SVM.The Second IEEE International Conference on Cognitivelnformatics 2003: 55-59.
  • 4张冀,王兵树,邸剑,于浩,鲁斌.传感器多故障诊断的信息融合方法研究[J].中国电机工程学报,2007,27(16):104-108. 被引量:23
  • 5王栋.基于神经网络的矿井提升机监测与故障诊断系统的研究[D].青岛:山东科技大学,2006:49-61.
  • 6Shawe-Taylor J, Crislianini N. An introduction to supporl vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge UniversityPress, 2008: 8-105.
  • 7潘明清.基于支持向量机的机械故障模式分类研究[D].杭州:浙江大学,2005:24-65
  • 8徐启华,师军.基于支持向量机的航空发动机故障诊断[J].航空动力学报,2005,20(2):298-302. 被引量:54

二级参考文献22

  • 1王海涛,刘群,邹启杰.设备故障诊断中神经网络与证据推理结合的信息融合方法[J].计算机工程与应用,2004,40(22):213-216. 被引量:7
  • 2黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用[J].动力工程,2004,24(4):542-547. 被引量:28
  • 3赵道利,马薇,梁武科,罗兴锜.水电机组振动故障的信息融合诊断与仿真研究[J].中国电机工程学报,2005,25(20):137-142. 被引量:42
  • 4Simon Haykin.Neural Networks:A Comprehensive Foundation,(Second Edition)[M].Beijing:China Machine Press,2004.
  • 5Chiang Leo H,Kotanchek Mark E,Kordon Arthur K.Fault Diagnosis Based on Fisher Discriminant Analysis and Support Vector Machines[J].Computers & Chemical Engineering,2004,28(8):1389~1401.
  • 6Samanta B,Al-Balushi K R,Al-Araimi S A.Artificial Neural Networks and Support Vector Machines with Genetic Algorithm for Bearing Fault Detection[J].Engineering Applications of Artificial Intelligence,2003,16(7):657~665.
  • 7Jack L B,Nandi A K.Support Vector Machines for Detection and Characterization of Rolling Element Bearing Faults[J].Journal of Mechanical Engineering Science,2001,215(9):1065~1074.
  • 8Dempf D,List T.On-line data reconciliation in chemical plants[J].Computer Chemical Engineering,1998,22:1023-1025.
  • 9Janez F.Fusion of information's sources defined on different non-exhaustive reference sets[D].University of Angers,1996.
  • 10Sharer G.A mathematical theory of evidence[M].Princeton,NJ,Princeton University Press,1976.

共引文献162

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部