1Werhli AV ,Husmeier D, Grzegorczyk M. Comparative evaluation of reverse engineeringgene regulatory networks with relevance networks, graphical Gaussian models and Bayesiannetworks. Bioinformatics, 2006 (22) :2523-2531.
2Yamanishi Y, Vert JP, Kanehisa M. Protein network inferencefrom multiple genomic data: a supervised approach. Bioinformatics, 2004, 20 (Suppl 1 ) :363-370.
3Kishino H, Waddell PJ. Correspondence Analysis of Genes and Tissue Types and Finding Genetic Links from Microarray Data. In Genome Informatics Edited by: Dunker A, Konagaya A,MiyanoS, TTakagi. Tokyo: Universal Academy Press,2000.
4Werhli AV, Husmeier D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol,2007,6 :Articlel5.
5Sachs K, Perez O,Pe'er D, et al. Causal protein signaling networks dedved from multiparameter single-cell data. Science, 2005,308,523 - 529.
6Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. Journal of Computational Biology, 2000, 7 (3) :601-620.
8Naehman I,Regev A,Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformaties, 2004,20 ( suppl 1 ) :248-256.
9Robinson RW. Counting labeled acyclic digraphs. In New Directions in the Theory of Graphs. Edited by: Harary F. New York:Academic Press, 1973,239-273.
10Chickering DM. Learning Bayesian networks is NP-complete. In Learning from Data:Artificial Intelligence and Statistics V, D. Fisher, H. -J. Lenz, Eds. Springer-Vedag, New York, 1996.
2Friedman N,Goldszmidt M,Wyner A. Data analysis with Bayesian net- works : A bootstrap approach. Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. , 1999 : 196-205.
3Broom BM, Do KA, Subramanian D. Model averaging strategies for structure learning in Bayesian networks with limited data. BMC Bioin- formatics,2012,13 ( Suppl 13 ) : S10.
4Scutari M. Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv :0908. 3817,2009.
5Friedman N, Linial M, Nachman I, Pe' er D. Using Bayesian networks to analyze expression data. J Comput Bio1,2000,7 ( 3-4 ) :601-620.
6Bell D, Berchuck A, Birrer M, et al. Integrated genomic analyses of o- varian carcinoma. Nature,2011,474(7353) :609-615.
7Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA pre- diction server:biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010,38 ( Web Server is- sue) : W214 -220.
8Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1 : protein- protein interaction networks, with increased coverage and integration. Nucleic Acids Res, 2013,41 ( Database issue) : D808-815.
9Ferrandina G, Mey V, Nannizzi S, et al. Expression of nucleoside trans- porters, deoxycitidine kinase, ribonucleotide reductase regulatory sub- units, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemother Pharmacol, 2010,65 (4) : 679 -686.
10Zhang M,Wang J,Yao R,et al. Small interfering RNA(siRNA)-medi- ated silencing of the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in ovarian cancer. International Journal of Gyneco- logical Cancer, 2013,23 ( 4 ) : 659 -666.