摘要
考虑了一类远期利率模型,它的动态可以表示成一个漂移项和一个随机域的和.其中随机域是一个波动类型的随机偏微分方程的解.在风险中性测度下得到了使得模型无套利的充分必要条件,即HJM漂移条件,并由此得到了基于债券的可违约期权价格的精确解.
Forward rate dynamics are modeled as sum of a drift and a random field, which is a solution to a wave-typed stochastic partial differential equation. The HJM drift condition for the interest rate processes sufficient and necessary to preclude arbitrage under the risk neutral measure is obtained. The price of defaultable bond option is derived in closed form.
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第1期51-56,共6页
Acta Scientiarum Naturalium Universitatis Nankaiensis