期刊文献+

波动型随机偏微分方程模拟的远期利率期限结构模型(英文)

Modeling the Term Structure of Forward Rate Curve by Wave-typed SPDEs
下载PDF
导出
摘要 考虑了一类远期利率模型,它的动态可以表示成一个漂移项和一个随机域的和.其中随机域是一个波动类型的随机偏微分方程的解.在风险中性测度下得到了使得模型无套利的充分必要条件,即HJM漂移条件,并由此得到了基于债券的可违约期权价格的精确解. Forward rate dynamics are modeled as sum of a drift and a random field, which is a solution to a wave-typed stochastic partial differential equation. The HJM drift condition for the interest rate processes sufficient and necessary to preclude arbitrage under the risk neutral measure is obtained. The price of defaultable bond option is derived in closed form.
作者 王学强
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期51-56,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 远期利率 随机偏微分方程 随机域 HJM条件 债券期权 forward rate SPDE random field HJM condition bond option
  • 相关文献

参考文献9

  • 1Vasicek O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5:177 --188.
  • 2Brennan M, Schwartz E. A continuous time approach to the pricing of bonds [J]. Journal of Banking and Finance, 1979, 3: 133--155.
  • 3Cox J, Ingersoll J, Ross S. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53: 385--408.
  • 4Heath D C, Jarrow R A, Morton A. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation[J]. Econometrica, 1992, 60: 77-- 105.
  • 5Kennedy D P. The term stucture of interest rates as a Gaussian random field[J]. Mathematical Finance, 1994, 4: 247--258.
  • 6Goldstein R. The term structure of interest rates as a random field[J]. Review of Financial Studies, 2000, 13: 365-- 384.
  • 7Schmidt T. Credit risk modeling with random fields[D]. Hessen.. Justus-Liehig Universitat Gieβen, 2003.
  • 8Hamza K, Klebaner F. On solutions of first order stochastic partial differential equations[J]. Far East J Theo Stat, 2006, 20(1): 13--25.
  • 9Walsh J. An Introduction to Stochastic Partial Differential Equations (Lecture Notes in Mathematics, 1180)[M]. Berlin.. Springer-Verlag, 1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部