期刊文献+

五种茄科糖苷生物碱及其混合物的抗真菌活性研究(英文) 被引量:9

Antifungal Activity of Five Solanaceous Glycoalkaloids and Their Mixtures against Phytopathogenic Fungi Cercosporella brassicae and Alternaria porri
下载PDF
导出
摘要 本文研究了五种茄科糖苷生物碱(茄碱、查茄碱、边缘茄碱、澳洲茄碱和番茄碱)对两种植物病原真菌白菜白斑病菌和葱紫斑病菌的抑制活性。结果表明番茄碱的抗真菌活性最强,其后依次是查茄碱、边缘茄碱和澳洲茄碱,茄碱的活性最弱;不同浓度茄碱和查茄碱(马铃薯中的两种糖苷生物碱)的混合物均具有协同抗真菌作用,且低浓度的混合物产生的协同作用效果较大;边缘茄碱和澳洲茄碱(龙葵中的两种糖苷生物碱)的混合物基本没有协同抗真菌作用;边缘茄碱和查茄碱的混合物以及澳洲茄碱和茄碱的混合物(均为来自不同植物的糖苷生物碱的混合物)在抗真菌活性上都呈现了相加关系。 The antifungal activity of five solanaceae glycoalkaloids solanine, chaconine, solasonine, solamargine and tomatine against phytopathogenic fungi Cercosporella brassicae and Alternaria porri has been evaluated. Tomatine showed the highest antifungal activity against C. brassicae and A. porri among five compounds, followed with chaconie, solamargine and solasonine,while solanine showed the lowest antifungal activity. Mixture of potato glycoalkaloids solanine and chaconine produced marked synergistic antifungal activity. The magnitude of synergisms is higher at lower concentrations than that at higher concentrations. The antifungal activity of individual glycoalkaloid against A. porri was relative low, even no activity, but the mixture of chaconine and solanine showed significant synergism. There was no synergism between glycoalkaloids solasonine and solamargine from Solanum nigrum in inhibiting fungul growth. The mixtures of solamargine and chaconine, and solasonine and solanine both caused additive inhibition on the growth of fungi.
出处 《天然产物研究与开发》 CAS CSCD 2009年第1期36-43,共8页 Natural Product Research and Development
基金 supported by Specialized ResearchFund for the Doctoral Program of Higher Education(20070200004) the Natural Science Foundation of Jilin Province (20040546)
关键词 抗真菌活性 糖苷生物碱 白菜白斑病菌 葱紫斑病菌 协同作用 antifungal activity glycoalkaloids Cercosporella brassicae Alternaria porri synergism
  • 相关文献

参考文献19

  • 1Osboum AE. Saponins and plant defence-a soap story. Trends Plant Sci,1996,1:4-9.
  • 2Arneson PA, Durbin RD. The sensitivity of fungi to α-tomatine. Phytopathology, 1968,58:536-537.
  • 3Friedman M. Tomato glycoalkaloids:role in the plant and in the diet. J Agric Food Chem ,2002 ,50 : 57 51-5780.
  • 4Roddick JG. Steroidal glycoalkaloids: Nature and consequences of bioactivity. In: Waller GR and Yamasaki K. eds, Saponins Used in Traditional and Modem Medicine. New York: Plenum Press, 1996.271-295.
  • 5Morrissey JP, Osbourn AE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev, 1999,63:708-724.
  • 6Steel CC, Drysdale RB. Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by α-tomatine. Phytochemistry, 1988,27 : 1025-1030.
  • 7Keukens EA, de Vrije T, van den Boom C, et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta , 1995,1240:216-228.
  • 8Roddick JG, Anna L, Rijnenberg, et al. Alterations to the permeability of liposome membranes by the solasodine-based glycoalkaloids solasonine and solamargine. Phytochemistry, 1992,31 : 1951-1954.
  • 9Roddick JG, Rijnenberg AL, Osman SF. Synergistic interac-tion between the potato glycoalkaloids α-solanine and α- chaconine in relation to destabilization of cell membrances: ecological implications. J Chem Ecol , 1988,14:889-902.
  • 10Purl R,Wong TC,Puri RK. 1H and 13C NMR assignments and structural determination of a novel glycoalkaloid from Solanum platanifolium. J Nat Prod, 1994,57:587-596.

同被引文献100

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部