期刊文献+

基于神经元阈上非周期随机共振机制的语音复原技术研究 被引量:8

Speech Restoration Based on Suprathreshold Stochastic Resonance of Neuron Model
下载PDF
导出
摘要 应用随机共振机制,通过噪声能量来加强语音信号,改善低信噪比语音的输出质量。对FitzHugh-Nagumo(FHN)神经元模型中存在的阈上非周期随机共振现象进行了分析,根据其阈值特性,此二维神经元模型可被等价为两状态的阈值跨越非线性动力学系统。因此对含噪语音信号添加噪声,产生阈值化后的二值输出,经迭代收敛进入阈上非周期随机共振状态。在一个非零添加噪声强度上,含噪语音输出的互相关系数将达到最大值。通过语音复原的结果表明,本文方法对噪声的变化有更好的鲁棒性,尤其在强背景噪声下,随机共振方法较其他传统方法有更佳的复原效果。 The quality of low signal-noise-ratio speech signal was improved by adding the noise energy to speech signal based on stochastic resonance mechanism. The suprathreshold stochastic resonance phenomenon of non-periodic response of FitzHugh-Nagumo (FHN) neuron model was analyzed firsdy. According to the threshold property, this two-dimensional neuron model may be equivalent to one nonlinear dynamic system, which has two states under the threshold condition. Adding the noise to the corrupted speech sig- nal, the two-value output was produced. The system was driven to the state of non-periodic suprathreshold stochastic resonance after the iterative convergence. The mutual relation ratio of the speech output will reach the maximum by adding a non-zero noise. The speech recovery results show that this method has a better robustness, particularly in strong background noise, stochastic resonance method than other conventional methods has a better recovery result.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第2期213-218,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助项目(60302027) 浙江省教育厅科研计划资助项目(20030620)
关键词 随机共振 语音复原FitzHugh-Nagumo神经元 stochastic resonance speech restoration fitzHugh-nagumo neuron
  • 相关文献

参考文献8

  • 1Gannot S, Burshtein D, Weinstein E. Iterative and Sequential Kalman Filter-Based Speech Enhancement Algorithms. IEEE Transaction Speech and Audio Processing [J]. 1998, 6 (4) : 373-385.
  • 2Jabloun F, Champagne B. A Multi-Microphone Signal Subspace Approach for Speech Enhancement[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, 1: 205-208.
  • 3Fan N. Low Distortion Speech Denoising Using an Adaptive Parametric Wiener Filter[C]// 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 1 : 309-312.
  • 4Lallouani A, Gabrea M, Gargour C. Wavelet Based Speech Enhancement Using Two Different Threshold-Based Denoising Algorithms [C]// Canadian Conference on Electrical and Computer Engineering, 2004, 1: 315-318.
  • 5Frank M, Lawrence M, Walter G. Stochastic Resonance and Sensory Information Processing: A Tutorial and Review of Application [J ]. Clinical Neurophysiology, 2004, 115 (2) : 267-281.
  • 6Harmer G P, Davis B R, Abbott D. A Review of Stochastic Resonance: Circuits and Measurement [J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2) : 299-309.
  • 7Nozaki D, Yamarnoto Y. Enhancement of Stochastic Resonance in a FitzHugh-Nagumo Neuronal Model Driven by Colored Noise. Physics Letters A, 1998, 243(5-6) : 281-287.
  • 8Vilar J, Gomila G, Rubi J. Stochastic Resonance in Noisy Nondynamical Systems[J]. Physical Review Letters, 1998, 81 (1): 14-17.

同被引文献102

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部