期刊文献+

Global Well-Posedness of the BCL System with Viscosity 被引量:1

Global Well-Posedness of the BCL System with Viscosity
原文传递
导出
摘要 The BCL system, a kind of equations governing the motion of the free surface of water waves in R3, is studied. Some results on the global existence, uniqueness and regularity of solutions to such system with small initial data are obtained.
作者 Junqi HU
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第2期153-172,共20页 数学年刊(B辑英文版)
基金 Project supported by the Leading Academic Discipline Program and the 211 Project for Shanghai University of Finance and Economics (the 3rd phase)
关键词 Pseudo-differential operator Water waves Global well-posedness L系统 适定性 粘度 运动方程 原始数据 水面波
  • 相关文献

参考文献18

  • 1Amick, C. J., Regularity and uniqueness of solutions to the Boussinesq system of equations, J. Diff. Eqs., 54, 1983, 231-247.
  • 2Bona, J. L., Chen, M. and Saut, J. C., Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media, I, Derivation and linear theory, J. Nonlinear Sci., 12, 2002, 283-318.
  • 3Bona, J. L., Chen, M. and Saut, J. C., Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media, Ⅱ, The nonlinear theory, Nonlinearity, 17, 2004, 925-952.
  • 4Bona, J. L., Colin, T. and Lannes, D., Long wave approximations for water waves, Arch. Rational Mech. Anal., 178, 2005, 373-410.
  • 5Boussineq, J. V., Theorie generale des mouvements qui sont propages dans un canal retangulaire hrizontal, Comp. Redus. Acad. Sci.,73, 1871, 256-260.
  • 6Bridges, T. J. and Fan, E. G., Solitary waves, perodic waves, and a stablity analysis for Zufiria's higherorder Boussinesq model for shallow water waves, Phy. Lett., 326A, 2004, 381-390.
  • 7Hu, J. Q., Decay estimates of solutions to the linearized BCL system with viscosity (in Chinese), Chin. Ann. Math., 29A(2), 2008, 159-178.
  • 8Johnson, R. S., A Modern Introduction to the Mathematical Theory of the Water Waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997.
  • 9Kaup, D. J., A higher-order water-wave equation and the method for solving it, Progr. Theo. Phy., 54, 1975, 396-408.
  • 10Lannes, D., Well-posedness of the water-waves equations, J. Amer. Math. Soc., 18, 2005, 605-654.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部