摘要
在同步数据流模型(SDF)描述的嵌入式数字信号处理(DSP)系统中,计算体单一出现调度(SAS)算法对于存在反馈环和数据密集处理的应用不可解或内存优化效果很差.文中提出了将SAS和Non-SAS类型调度算法相结合的层次化的存储优化方法,定义了数据密集分量和强连通分量来描述环和数据密集处理结构,并依据数据优先消耗原则设计了启发式的Non-SAS调度算法对分量进行存储优化.该方法适用于任意SDF模型,并有良好的存储优化效果.实验结果证明了其有效性.
In the embedded DSP systems represented as synchronous data flow (SDF), the single appearance schedules (SAS) scheduling algorithms do not always have solutions or optimized memory for those applications with feedback loops or data dense structures. In this paper a hierarchical optimized memory method, which combines the SAS scheduling sequence with Non-SAS scheduling sequence, is proposed to solve the optimized memory problem. In the method, data dense sub graph and strongly connected sub graph are defined for data dense structures and loops, and by the principle of consuming tokens first, a Non-SAS heuristic algorithm is designed for optimized memory of these sub graphs. The method is available for an arbitrary SDF graph, and has good optimized memory. Experimental results validate the proposed method.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2009年第3期362-368,共7页
Journal of Computer-Aided Design & Computer Graphics
基金
国家“八六三”高技术研究发展计划(2006AA010201)
关键词
嵌入式系统
同步数据流
存储优化
调度序列
embedded system
synchronous dataflow
memory optimization
scheduling sequence