期刊文献+

基于ICA的非线性自适应特征融合的人耳识别 被引量:11

An ICA-Based Ear Recognition Method through Nonlinear Adaptive Feature Fusion
下载PDF
导出
摘要 针对单一特征的人耳识别对旋转角度鲁棒性差的问题,提出一种非线性自适应特征融合的方法.首先提取人耳的2种具有互补性质的独立成分特征,然后将它们加权串联形成高维融合特征;最后通过核主元分析方法实现非线性降维.实验结果表明,当人耳有姿态旋转时,融合特征较单一特征的识别率有显著提升,且文中方法比传统的串联融合的识别结果更好. The performance of ear recognition based only on one type of features could be very poor when the ear has a large pose variation. To tackle the problem, we propose a nonlinear adaptive feature fusion method. Firstly, two types of complimentary features .are extracted using ICA. Then thoes features under different weighting are concatenated to form a high dimensional fused feature. Finally, the feature dimension is reduced by the kernel PCA. Experimental results show that the ear recognition rate with our fused feature is much higher under large pose variation. In addition, the fusion strategy we proposed here works even better than the conventional serial feature fusion one.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第3期382-388,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60375002 60573058)
关键词 人耳识别 独立成分分析 特征融合 核空间 降维 ear recognition independent component analysis (ICA) feature fusion kernel space dimensionality reduction
  • 相关文献

参考文献10

二级参考文献51

  • 1张海军,穆志纯,危克.人耳识别技术研究进展综述[J].计算机工程与应用,2004,40(33):5-7. 被引量:17
  • 2王忠礼,穆志纯,王修岩,弭洪涛.基于不变矩匹配的人耳识别[J].模式识别与人工智能,2004,17(4):502-505. 被引量:12
  • 3BURGE M,BURGER W.Ear Biometrics in Computer Vision[A].In the 15th International Conference of Pattern Recognition[C].2000.822-826.
  • 4BIEDERMAN I.Recognition by components:A theory of human images understanding[J].Psychol,1987,94(2):115-147.
  • 5LEE DD,SEUNG HS.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
  • 6WANG Y,JIA YD.Fisher Non-negative matrix Factorization for Learning Local Features[A].Asian Conference on Computer Vision[C].Korea,2004.27-30.
  • 7HOYER PO.Non-negative matrix factorization with sparseness constraints[J].Journal of Machine Learning Research,2004,5(9):1457-1469.
  • 8HOYER PO.Non-negative sparse coding[A].In Neural Networks for Signal Processing[D].Martigny,Switzerland,2002.557-565.
  • 9LEE DD,SEUNG HS.Algorithms for non-negative matrix factorization[A].Proceedings of NIPS'2000[C].MIT Press,2000.
  • 10Moreno B, Afnchez á, Vélez J F. Use outer ear images for personal identification in security applications//IEEE Proceedings of the 33rd Annual 1999 International Carnahan Conference. Madrid, 1999:469

共引文献54

同被引文献126

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部