期刊文献+

支持外观属性保持的三维网格模型简化 被引量:15

Mesh Simplification for 3D Models with Feature-Preserving
下载PDF
导出
摘要 对已有的三维网格简化技术进行分析,利用半边折叠操作对QEM(quadric error metric)算法进行改进,提出了一种基于二次误差测度(QEM)的网格简化算法,解决了非连续外观属性在简化过程中的畸变问题.通过分析顶点与非连续外观接缝的关系,得出了一个新的边折叠代价公式,使得外观畸变在简化过程中尽可能地推迟;并且在执行半边折叠时给受影响的三角形找到了合适的替换wedge,避免外观畸变的发生.实验结果表明,该算法保持了QEM算法的高效性,同时在几何属性和外观属性上都取得了令人满意的简化效果. This paper analyzes current mesh simplification methods, and proposes a algorithm based on the quadric error metric (QEM) for feature preserving. It adopts a Half-edge collapse method for mesh simplification and modifies QEM to remove the discontinuities of appearance attributes. By analyzing the relationships between vertices and the discrete appearance seam, a new formula is obtained which enables the edge contraction to postpone the appearance; meanwhile a proper replacer is selected for the wedge in the triangle that has been affected by half-edge collapsing operation to avoid material distortion. Experimental results demonstrate that author's algorithm achieves a similar high efficiency as QEM with desirable geometry and feature-preserving.
出处 《软件学报》 EI CSCD 北大核心 2009年第3期713-723,共11页 Journal of Software
基金 国家自然科学基金~~
关键词 网格简化 半边折叠 累进网格 二次误差测度 外观属性保持 mesh simplification half-edge collapse progressive mesh the quadric error metric feature preserving
  • 相关文献

参考文献19

  • 1Pan ZG, Pang MY. Survey for decimation of geometric meshes. Journal of Jiangsu University, 2005,26(1):67-71 (in Chinese with English abstract).
  • 2Luebke D. A developer's survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications, 2001,21 (3):24-35.
  • 3Heam D, Baker MP. Computer Graphics. 2nd ed., Upper Saddle River: Prentice Hall/Pearson, 1996.45-46.
  • 4Dong WL, Li JK, Jay Kuo CC. Fast mesh simplification for progressive transmission. In: Akansu AN, ed. Proc. of the 1EEE Int'l Conf. on Multimedia & Expo. New York: IEEE Computer Society Press, 2000. 1731-1734.
  • 5Luebke D, Reddy M, Cohen J, Varshney A, Watson B, Huebner R. Level of Detail for 3D Graphics. San Francisco: Morgan Kaufmann Publishers, 2002.431-467.
  • 6Cignoni P, Montani C, Scopigno R. A comparison of mesh simplification algorithms. Computers and Graphics, 1998,22(1):37-54~
  • 7Hoppe H. Progressive meshes. In: Rushmeier H, ed. Proc. of the SIGGRAPH. New Orleans: Addison-Wesley Professional, 1996. 99-108.
  • 8Hoppe H, DeRose T, Tom Duchamp. Mesh optimization. In: Thomas JJ, ed. Proc. of the SIGGRAPH. Chicago: ACM Press, 1992. 19-26.
  • 9Hoppe H. New quadric metric for simplifying meshes with appearance attributes. In: Ebert DS, Gross MH, Hamann B, eds. Proc. of the IEEE Visualization. Los Alamitos: 1EEE Computer Society Press, 1999.59-66.
  • 10Kobbelt L, Campagna S, Seidel HP. A general framework for mesh decimation. In: Davis W, Booth K, Fournier A, eds. Proc. of the Graphics Interface. New York: ACM Press, 1998.43-50.

同被引文献158

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部