摘要
粒子群优化(PSO)算法是近年来发展起来的一种基于群智能的随机优化算法,具有概念简单、易于实现、占用资源低等优点。为了解决有应力约束和位移约束的桁架的尺寸优化问题,将PSO算法应用于桁架结构的尺寸优化设计。首先介绍了原始的PSO算法的基本原理,然后引入压缩因子改进了PSO算法,并提出合理的参数设置值。对几个经典问题进行了求解,并与传统的优化算法和遗传算法进行了比较。数值结果表明,改进的PSO算法具有良好的收敛性和稳定性,可以有效地进行桁架结构的尺寸优化设计。
The particle swarm optimization (PSO) algorithm developed in recent years is a stochastic optimization algorithm based on swarm intelligence. It possesses advantages such as being a simple concept, ease of implementation and low resource occupation. The PSO algorithm was adopted to solve the problem of size optimization of truss structures with stress and displacement constraints. We present the basic principle of the original PSO algorithm in detail, and then introduce a constriction coefficient to modify it. Moreover, reasonable values of the coefficients are proposed for the modified PSO algorithm. Several classical problems are solved using the modified PSO algorithm, and the results compared with those using traditional optimization algorithms and genetic algorithms. Numerical results show that the modified PSO algorithm has good convergence and stability, and can be applied to the size optimization of truss structures.
出处
《土木建筑与环境工程》
CSCD
北大核心
2009年第1期7-12,共6页
Journal of Civil,Architectural & Environment Engineering
基金
国家自然科学基金资助项目(50708076)
关键词
粒子群优化算法
优化
桁架结构
尺寸优化
压缩因子
particle swarm optimization algorithm
optimization
truss structures
size optimization
constriction coefficient