期刊文献+

基于主题相关性分析的文本倾向性研究 被引量:16

Prediction on Semantic Orientation of Texts Based on Topic Correlation
原文传递
导出
摘要 随着互联网的普及和电子商务的快速发展,网络评论、论坛讨论已成为人们网络生活的重要部分,并影响着社会舆论导向。如何识别网络评论对敏感主题(色情、法轮功等)的主观倾向性,把握网络舆情的正面或负面导向性,已成为信息安全领域研究的重要课题。文章以网络评论(影评)为研究对象,提出了一种分析文本语义倾向性的新模型,与传统倾向性识别系统不同的是,文章通过分析倾向性词汇与文本主题的相关性来研究文本的总体语义倾向。实验表明,新模型的判别准确率在80%以上,具有良好的应用前景。 With wide spreading of network and quick developing of E-commerce, on-line reviews and news group discussions have become important parts in people's daily life. How to identify the semantic orientation of these reviews on sensitive topics, such as sex and Falun Gong, and how to effectively control the public opinions and feelings on Internet, have been a focus for the research of information security. This paper presents a new model for predicting semantic orientation of texts. Different from traditional algorithms for sentiment classification, this model extracts leatures and computes their similarity with the topic. The similarity is taken as a factor when evaluating the orientation of texts. Experiment results have proved the effectiveness of the model.
出处 《信息安全与通信保密》 2009年第3期77-78,81,共3页 Information Security and Communications Privacy
基金 国家自然科学基金项目(编号60502032 60772098)
关键词 信息安全 文本语义倾向 主题相关性 机器学习 information security semantic orientation topic correlation machine leaming
  • 相关文献

参考文献5

  • 1V Hatzivassiloglou,K McKeown.Predicting the Semantic Orientation of Adjectives[A].In:Proceedings of the 35th Annual Meeting of the ACL[C].New Jersey:ACL,1997:174-181.
  • 2Peter D Turney.Thumbs Up or Thumbs Down Semantic Orientation Applied to Unsupervised Classification of Reviews{A].In Proceedings of the 40th ACL[C].New Jersey:ACL,2001:417-424.
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 4刘永丹,曾海泉,李荣陆,胡运发.基于语义分析的倾向性文本过滤[J].通信学报,2004,25(7):78-85. 被引量:35
  • 5董振东,董强.知网[EB/OL].[2008-08-01].http://www.keenage.com.

二级参考文献15

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:59
  • 2金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 4董振东 董强.[EB/OL].知网.http://www.keenage.com,.
  • 5BELKIN N J, CROFT W B. Information filtering and information retrieval: two sides of the same coin[J]. Communication of the ACM, 1992, 35(2): 29-38.
  • 6STEVENS C. Knowledge-Based Assistance for Accessing Large, Poorly Structured Information Spaces[D]. University of Colorado, Department of Computer Science, Boulder.
  • 7DOUGLAS W, OARD, et al. A conceptual framework for text filtering [EB/OL]. Technical Report CS-TR3643, http://www. clis. umd. edu/dlrg/filter/papers. ps, February 15, 2003.
  • 8LAHAM D. Latent semantic analysis approaches to categorization[A]. Proceedings of the 19th Annual Meeting of the Cognitive Science Society[C]. 1997. 979.
  • 9V.Hatzivassiloglou,K.R.McKeown.Predicting the semantic orientation of adjectives[A].In:Proceedings of ACL-97,35th Annual Meeting of the Association for Computational Linguistics[C],Madrid,ES,1997:174 181.
  • 10P.D.Turney,M.L.Littman.Measuring praise and criticism:Inference of semantic orientation from association[J].ACM Transactions on Information Systems,2003,21(4):315 346.

共引文献148

同被引文献109

引证文献16

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部