摘要
基于有功功率反馈参与控制的水轮机调节系统,以几个典型工况下的最优PID系数作为训练样本,训练了一个三层BP神经网络,设计了一个用BP神经网络实现变参数的PID控制器;并构造了一个目标函数,设计了一个自适应神经元,利用神经元的自学习功能,在线优化控制器的输出,以期达到最优控制的目的。对简单电力系统的仿真结果表明,这种控制器可以达到较常规的变参数PID较好的控制效果,是实现水轮机调节系统自适应控制的一种可行的方法。
For the hydraulic trubine regulation system with real power feedback,by using the optimal PID parameters on the typical operating mode as the training samples,the paper has trained a three layers BP neural network,designed a variable parameters controller on the BP neural network, and constructed a object funciton,designed an adaptive neuron.For realizing the optimal control by using its self-learning function,the neuron has optimized the controller's output online.The computer simulation results for the simple electric power system have shown that the control effect of the controller is better than the traditional variable parameters PID controller.It is feasible to realige the adaptive control of the hydraulic turbine regulation system.
出处
《水力发电学报》
EI
CSCD
北大核心
1998年第1期93-99,共7页
Journal of Hydroelectric Engineering
关键词
神经网络
水轮发电机组
有功功率
PID控制器
BP neural network\ \ Adaptive neuron\ \ Hydraulic turbo generators\ Real power.