期刊文献+

一种基于非抽样LP的Contourlet变换图像去噪方法 被引量:1

A Method for Image De-noising Based on Nonsubsampled Pyramid Contourlet Transform
下载PDF
导出
摘要 由于提高Contourlet变换冗余性可以抑制去噪结果中的伪Gibbs现象,因此为了提高变换冗余度和避免数据量过大,以进行快速有效的图像去噪,提出了一种基于非抽样LP的Contourlet变换图像去噪方法。该方法首先对带噪图像进行非抽样LP多尺度分解;然后对各子带图像进行临界抽样的DFB分解,再采用尺度相关的分层模型对各子带图像进行阈值处理;最后对处理后的子带图像进行DFB和LP重建,以得到去噪后的图像。与同类型有关方法进行的对比实验表明,在去噪后图像的PSNR值上,该方法比常规Contourlet变换方法至少提高1dB;在完成时间方面,该方法比其他改进方法快1倍以上。 By enriching redundancy of the contourlet transform, it is possible to weaken pseudo-Gibbs phenomena in the process of image de-noising by thresholding. In order to remove noise from image effectively and quickly, by enriching redundancy of the eontourlet transform and avoiding too much data, a method for image de-noising based on non-subsampled pyramid contourlet transform is proposed. The method decomposes noisy image using nonsubsampled LP for multi-scale, and decomposes sub-image using critical sampled DFB, then performs scale related threshold for shrinkage, finally reconstructs de-noised image. Experiments compared with other related methods show that the proposed method, on the PSNR values of the de-noised images, yields improvements up to ldB over original contourlet transform; on the time consumption, costs half less than other improved methods.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第3期458-462,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60772121) 安徽省高校青年教师科研资助项目(05020413)
关键词 图像去噪 CONTOURLET变换 非抽样滤波器 image de-noising, Contourlet transform, nonsubsampled filter banks
  • 相关文献

参考文献7

  • 1Do M N, Vetterli M. The contourlet transform: An efficient directional multiresolution image representation [ J]. IEEE Transactions on Image Processing,2005,14(12) :2091-2106.
  • 2Ramin Eslami, Hayder Radha. The contourlet transform for image denoising using cycle spinning [ A ]. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers[ C ] , Pacific Grove, Michigan, USA ,2003 : 1982-1986.
  • 3梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 4Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: Theory, design, and applications[ J]. IEEE Transactions on Image Processing, 2006,15(10) :3089-3101.
  • 5Shensa M J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms [ J ]. IEEE Transactions on Signal Processing, 1992,40(10) : 2464-2482.
  • 6涂丹,沈建军,沈振康.小波阈值技术在图像降噪中的应用研究[J].国防科技大学学报,1999,21(2):42-45. 被引量:18
  • 7Phoong S M, Kim C W, Vaidyanathan P P,et al. A new class of two- channel biorthogonal filter banks and wavelet bases [ J ]. IEEE Transactions on Signal Processing, 1995,43(3 ) :649-665.

二级参考文献7

  • 1Donoho D L.De-noising by soft-thresholding[J].IEEE Trans.Information Theory,1995,41(3):613-627.
  • 2Do M N.Directional multiresolution image representation[D].PhD thesis,EPFL,Lausanne,Switzerland,2001.
  • 3Do M N,Vetterli M.Contourlets:A directional multiresolution image representation[A].Proc of IEEE International Conference.on Image Processing[C].Rochester,NY:2002.357-360.
  • 4Coifman R R,Donoho D L.Translation invariant denoising[A].Wavelets and Statistics,Springer Lecture Notes in Statistics 103[C].New York:Springer-Verlag,1995.125-150.
  • 5Fletcher A K,Ramchandran K,Goyal V K.Wavelet denoising by recursive cycle spinning[A].Proc IEEE International Conference Image Processing[C].Rochester,NY:2002.873-876.
  • 6Fletcher A K,Ramchandran K,Goyal V K.Iterative projective wavelet methods for denoising[J].Proc Wavelets:Appl in Sig & Image Proc X,part of SPIE Int Symp on Optical Sci & Tech,2003,5207(1):9-15.
  • 7Eslami R,Radha H.The contourlet transform for image de-noising using cycle spinning[A].Asilomar Conference on Signals,Systems,and Computers[C].Pacific Grove,USA:2003.1982-1986.

共引文献54

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部