期刊文献+

基于模糊聚类的稳健支撑向量回归机及火焰图像处理 被引量:2

Fuzzy Clustering Based Robust SVR and Flame Image Processing
下载PDF
导出
摘要 由于离群点会降低支撑向量回归机的性能,因此为了提高支撑向量回归机的图像处理性能,提出了一种具有抗离群点性能的模糊稳健支撑向量回归机(FRSVR),并首先给出了在任意代价函数下支撑向量回归机的求解方法;然后讨论了构建稳健支撑向量机的代价函数所需的性质,并在此基础上,引入了损失代价函数族;接着根据支撑向量回归机的训练误差,用模糊C均值聚类(FCM)查找离群点;最后通过迭代的方法实现了模糊稳健支撑向量回归机。为了对火焰图像进行有效处理,还将FRSVR算法应用于乳化油燃烧火焰图像处理,以去除火焰图像上的离群点。实验结果表明,FRSVR算法处理图像的性能优于ε-SVR算法和自适应SVR滤镜(ASBF),不仅能有效地查找离群点,而且可去除较大的离群点区域,还能显著的降低离群点的影响,并具有良好的泛化性能。 A novel support vector regression method-FRSVR(fuzzy robust support vector regression) based on traditional ε-SVR is proposed in this paper. First, a solution for support vector regression with arbitrary cost function is given. Second the properties which a cost function should have in order to construct a robust support vector regression are discussed. Then a family of cost functions is introduced. In the training procedure of FRSVR, outliers can also be detected in terms of different training error ranges between normal examples and outliers using fuzzy c-means algorithm (FCM). Through iteration, FRSVR is obtained. Since it is based on ε-SVR, various optimization methods for epsilon support vector regression can be used to solve FRSVR. In the experimental part of the paper, FRSVR is applied to process emulsified oil combustion flame images such that outliers therein can be detected and removed, then flame shapes are accordingly segmented. Experimental results show that FRSVR performs better than ε-SVR and ASBF filter in the sense of removing outliers and enhancing the generalization ability.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第3期463-470,共8页 Journal of Image and Graphics
基金 国家高技术研究发展计划(863)项目(2006AA10Z313) 国家自然科学基金项目(60773206/F020106,60704047/F030304) 国防应用基础研究基金项目(A1420461266) 2004年教育部跨世纪优秀人才支持计划基金项目(NCET-04-0496) 2005年教育部科学研究重点基金项目(105087)
关键词 离群点 支撑向量回归 模糊聚类 outlier, support vector regression(SVR), fuzzy clustering
  • 相关文献

参考文献20

  • 1Smola A J, Scholkopf B. A tutorial on support vector regression [ J]. Statistics and Computing, 2004, 14 (3) : 199-222.
  • 2Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithm [J]. Neural Computation, 2000, 12(12) : 1207-1245.
  • 3Song Q, Hu W, Xie W. Robust support vector machine with bullet hole image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 2002, 32(4):440-448.
  • 4Weston J, Herbrich R. Adaptive margin support vector machines [ A]. In: Smola A J, Bartlett P, Sch~lkopf B, et al. eds: Advances in Large Margin Classifiers[ C ], Cambridge, MA, USA: MIT Press, 2000 : 281-295.
  • 5Xu Lin-li, Crammer K, Schuurmans D. Robust support vector machine training via convex outlier ablation [ A ]. In : Proceedings of the 21 st National Conference on Artificial Intelligence [ C ] , Boston, Massachusetts, USA, 2006: 536-546.
  • 6Zhan Yi-qiang, Shen Ding-gang. An adaptive error penalization method for training an efficient and generalized SVM [ J] . Pattern Recognition, 2006, 39(3) : 342-350.
  • 7张讲社,郭高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177. 被引量:13
  • 8Suykens J A K, De Brahanter J, Lukas L, et al. Weighted least squares support vector machine: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1-4) : 85-105.
  • 9Chuang C C, Su F F, Jeng J T, et al. Robust support regression networks for function approximation with outliers [ J ] . IEEE Transactions on Neural Networks, 2002, 13 (6) : 1322-1330.
  • 10Zhan Yong, Cheng Hao-zhong. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system [J].Electric Power Systems Research, 2005, 73 (3) : 393-400.

二级参考文献26

  • 1张讲社,郭高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177. 被引量:13
  • 2袁理明.二维线性湍流浮力扩散火焰高度[J].中国科学技术大学学报,1997,27(1):79-83. 被引量:5
  • 3雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1999..
  • 4《化工百科全书》编辑委员会编.化工百科全书[M].北京:化学工业出版社,1997..
  • 5张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Duan K., Keerthi S.S., Poo A.N.. Evaluation of simple performance measures for tunning SVM hyperparameters. National University of Singapore, Singapore: Technical Report CD-01-11, 2001
  • 7Suykens J.A.K., de Brabanter J., Lukas L., Vandewalle J.. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 2002, 48(1~4): 85~105
  • 8Chuang C.-C., Su F.-F., Jeng J.-T., Hsiao C.-C.. Robust support vector regression networks for function approximation with outliers. IEEE Transactions on Neural Networks, 2002, 13(6): 1322~1330
  • 9Platt J.C.. Fast training of support vector machines using sequential optimization. In: Scholkopf B., Burges C., Smola A. eds. Advances in Kernel Methods: Support Vector Machines. Cambridge, MA: MIT Press, 1998, 185~208
  • 10Shevade S.K., Keerthi S.S., Bhattacharyya C., Murthy K.R.K.. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 2000, 11(5): 1188~1193

共引文献14

同被引文献19

引证文献2

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部