期刊文献+

线性互补约束规划问题的一种Filter算法

A FILTER ALGORITHM FOR SOLVING MATHEMATICAL PROGRAMMING WITH LINEAR COMPLEMENTARITY CONSTRAINTS
下载PDF
导出
摘要 本文研究了求解线性互补约束规划问题的算法问题.首先基于广义互补函数和摄动技术将问题转化为带参数的非线性优化问题,利用SlQP-Filter算法方法,求解线性互补约束规划问题的一种Filter算法.在适当条件下,证明了该算法的全局收敛性. An SlQP-Filter algorithm for solving mathematical programming with linear complementarity constraints is presented in this paper. First. the problem is be transformed into nonlinear optimization problem containing a parameter by means of generalized complementary function and perturbation technique, Secondly, the algorithm solving this general nonlinear optimization problem is designed by using SIQP-Filter method. Lastly, under some conditions, the global convergence of algorithm is proved.
出处 《数学杂志》 CSCD 北大核心 2009年第2期155-161,共7页 Journal of Mathematics
基金 国家自然科学基金研究项目(70771080)
关键词 线性互补约束 Filter算法 约束优化 Linear complementarity constraints Filter algorithm constrained optimization
  • 相关文献

参考文献9

  • 1Fletcher R, Leyffer S and Toint P L. On the global convergence of an SLP-filter algorithmER], Numerical Analysis Report. NA/183, Department of Mathematics, University of Dundee, 1998.
  • 2Fletcher R and Leyffer S. User manual for filter SQP[R]. Numerical Analysis Report. NA/181. Department of Mathematics, University of Dundee. 1998.
  • 3Fletcher R and Lcyffer S. Nonlinear programming without a penalty function[J-]. Mathematical Programming, 2002,91 (2) : 239-270.
  • 4Fukushima M, Luo Z-Q and Pang J S. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[J]. Computational Optimizarion Applications, 1998,10,5-34.
  • 5Nocedal J and Wright S J, Numerical Optimization[M].Springer-Verlag, Berlin, New York, 1999.
  • 6Ulbrich M and Vieente L N, A globally convergent primal-dual interior-point filter method for nonconvex nonlinear programming[J]. Mathematical Programming, 2003, 100:379-410.
  • 7聂普炎.优化中的筛选法[D],博士生学位论文.中国科学研究院计算数学与工程计算研究所,2002.
  • 8Yuan Y, On the convergence of a new trust region algorithm[J].Numerische Mathemarik, 1995,70:515-539.
  • 9万仲平.费浦生.优化理论与算法[M],武汉:武汉大学出版社.2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部