期刊文献+

双扭HOPF代数的对偶 被引量:3

DUALITY OF BITWISTED HOPF ALGEBRAS
下载PDF
导出
摘要 本文研究了一个双扭Hopf代数的分次对偶空间以及两个双扭Hopf代数的分次对偶关系.利用代数和余代数分次对偶空间的性质,得出一个局部有限的双扭(χ1,χ2)-Hopf代数的分次对偶空间是一个双扭(χ1T,χ2)-Hopf代数,并判定两个双扭Hopf代数的分次对偶可以简化为判定它们作为双扭双代数是分次对偶的. The aim of this paper is to discuss the gradedly dual space of a bitwisted Hopf algebra, and the gradedly duality relationship between two bitwisted Hopf algebras. By using the properties of the dual space of a graded algebra and coalgebra, we prove that the gradedly dual space of a local finite (Х1 , Х2 )- bitwisted Hopf algebra is a (X1^T ,Х2 )-bitwisted Hopf algebra, and then we point out that when we want to prove two bitwisted Hopf algebras to be graded dual as Hopf algebras, we only have to prove that they are graded dual as bitwisted bialgebras.
出处 《数学杂志》 CSCD 北大核心 2009年第2期179-185,共7页 Journal of Mathematics
基金 国家自然科学基金资助项目(10471121) 扬州大学自然科学基金资助项目(FK0313085)
关键词 双扭双代数 双扭Hopf代数 分次对偶 bitwisted bialgebra bitwisted Hopf algebra graded duality
  • 相关文献

参考文献1

二级参考文献5

  • 1Li L, Zhang P. Twisted Hopf Algebras, Ringel-Hall Algebras, and Green's Categories. J Algebra, 2000,231:713-743
  • 2Green J A. Hall algebras, hereditary algebras and quantum groups. Invent Math, 1995,120:361-377
  • 3Green J A. Quantum groups, Hall algebras, and quantized shuffles. In: Cabanes M ed, Finite Reductive Groups, Related Structures and Representations. Boston: Birkhauser, 1996
  • 4Ringel C M. Hall algebras revisited. Israel Math Conf Proc, 1993,7:171-176
  • 5Sweedler M E. Hopf Algebras. New York: Benjamin, 1969

共引文献3

同被引文献16

  • 1Ringe C M. Hall algebras revisited[J]. Israel Math Conf. Proc, 1993, 7: 171-176.
  • 2Sun J H. Equivalence of,z" -Hopfalgebras[J]. Acta. Math. Sci., 2003, 23 B(2): 239-246.
  • 3Li L B, Zhang E Twisted Hopf algebras, RingeI-Hall algebras and Green's categories[J]. Journal of Algebra, 2000, 231(2): 713-743.
  • 4Zhang P, Li L B. Twisted Hopf algebras[C]. Representations of Algebras Proc. International Conf. on Algebra in San Paulo. Brazil Lecture Notes in Pure and Applied Mathematics. New York, Basel: Marcel Dekker, Inc., 2002, 224: 269-282.
  • 5Sun J H, Li S Z. Some constructions of twisted HopfalgebrasEJ]. Math. Sci. Res. J., 2002, 6(7): 354-360.
  • 6Montgomery S. HopfAIgebras and Their Actions on Rings[M]. Providence: American Mathematical Society, 1993.
  • 7Nastatsescu C, Torrecillas. Graded coalgebras [J]. Tsukuba J: Math., 1993, 17(2): 461-479.
  • 8Sweedler M. HopfAlgebra[M]. New York: Benjamin, 1969.
  • 9Sweedler M. Hopf Algebra[M].New York:Benjamin,1969.
  • 10Montgomery S. Hopf algebras and their actions on rings[A].Providence,RT,1993.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部