期刊文献+

一类互惠模型的全局分歧和稳定性 被引量:2

The global bifurcation and stability of the steady-state solution for a cooperative model
下载PDF
导出
摘要 以生长率a2为参数,运用度理论和分歧理论给出了一类二维Lotka-Volterra互惠模型在齐次第一边界条件下半平凡解的全局分歧,同时证明了分歧解是局部稳定的. A kind of cooperative two-species Lotka-Volterra model with homogeneous Dirichlet boundary conditions is studied in this paper. Taking growth rate a2 as its bifurcation parameter, the global bifurcation are investigated by the degree theory and bifurcation theory. Meanwhile, it is proved that the bifurcations are stable in essence.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2009年第1期7-12,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10571115) 陕西省自然科学基础研究资助项目(2007A11)
关键词 互惠模型 全局分歧 稳定性 cooperative model global bifurcation stability
  • 相关文献

参考文献4

  • 1MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261: 459-467.
  • 2ZHOU H, LIN Z G. Coexistence in a strongly coupled system describing a two-species cooperative model[J]. ApplMath Lett, 2007, 20:1126-1130.
  • 3BAXLEY J V, THOMPSON H B. Nonlinear boundary value problems and competition in the chemostat[J]. Nonlinear Anal, 1994, 22: 1329-1344.
  • 4CRANDALL M G, RABINOWITZ P H. Bifurcation, perturbation of simple eigenvaluse and linearized stability [J]. Arch Rational Mech Anal, 1973, 52: 161-180.

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部