期刊文献+

关于n-表现维数 被引量:3

On n-presented Dimensions
下载PDF
导出
摘要 利用n-表现模定义了模M与环R的n-表现维数FPnd(M)与FPnD(R),给出了FPnd(M),fd(M)及pd(M)之间的关系,刻画了右n-凝聚环,即R为右n-凝聚环当且仅当对于任意右R-模M,均有FPnd(M)=FPn+1d(M).在右n-凝聚环R上给出了rgD(R),wD(R),FPnD(R)之间的关系. Using n- presented modules, introduce the concepts of n-presented dimensions FPnd(M) and FPnD(R) of a module M and a ring R, obtain some relations among FPnd(M), fd (M) and pd (M) , and then characterize a right n-coherent ring R, that is, R is right coherent if and only if FPnd(M) = FPn+1d(M) for each right R-module M. For a right n-coherent ring R, give the relations among rgD(R), wD(R) and FPnD(R) .
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期6-9,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 福建农林大学青年教师科研基金资助项目(08B27) 福建省教育厅基金资助项目(JA05212JA06009) 福建省科技厅F5项目(2007F5038)
关键词 n-表现模 n-表现维数 n-凝聚环 n-presented module n-presented dimension n-coherent ring
  • 相关文献

参考文献6

  • 1Anderson F W, Fuller K R. Ring and categories of modules [M]. 2nd edition. New York: Spring-Vcrlag, 1992.
  • 2Ng H K. Finitely presented dimension of commutative rings and modules [J]. Pacific of Math, 1984, 113:417- 431.
  • 3丁南庆.模的有限生成维数.南京大学学报:数学半年刊,1989,(1):107-111.
  • 4Xue Weimin. On n-presented modules and almost excellent extensions [J]. Comm Algebra, 1999, 27: 1091-1102.
  • 5Rotman J J. An introduction to homological algebra [M]. New York: Academic Press, 1979.
  • 6Jothingam P. When is a flat module projective[J]. Indian J Pure Appl Math, 1984, 15: 65-66.

共引文献3

同被引文献13

  • 1李元林.广义有限表现模[J].江苏大学学报(自然科学版),1992,22(2):101-107. 被引量:4
  • 2李元林.有限表现维数与凝聚环[J].数学杂志,1993,13(2):182-188. 被引量:6
  • 3丁南庆.模的有限生成维数.南京大学学报:数学半年刊,1989,(1):107-111.
  • 4Anderson F W,Fuller K R.Rings and categories of modules[M].New York:Springer-Verlag,1992.
  • 5Ng H K.Finitely presented dimension of commutative rings and modules[J].Pacific of Math,1984,113:417-431.
  • 6Anderson F W, Fuller K R. Ring and categories of modules : 2rid edition [ M ]. New York : Spring - Verlag, 1992.
  • 7Ng H K. Finitely presented dimension of commutative tings and modules [ J ]. Pacific of Math, 1984,113:417 - 431.
  • 8Chen J L, Ding N Q. On n - coherent rings [ J ]. Comm. Alge- bra, 1996,24:3211 - 3216.
  • 9Goodearl K R. Ring theory[ M ]. New York : Marcel Dekker, 1976.
  • 10Glaz S. Commutative coherent rings [ M ]. Lect. Notes Math. 1371, Berlin : Springer - Verlag, 1989.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部