期刊文献+

求解对流换热反问题的低阶模型 被引量:9

Reduced Order Model Based Algorithm for Inverse Convection Heat Transfer Problem
下载PDF
导出
摘要 在低阶模型的基础上开发了一种求解对流换热反问题的算法,并采用最佳正交分解方法分别建立了直接问题、敏感度问题和伴随问题的低阶模型,反问题求解采用了共轭梯度法.算例为一圆管内流动充分发展、换热初始段时,反求圆管壁面外未知热流密度的反问题.分别研究了测量位置、测量误差对算法性能的影响,结果表明通过将测量位置移向未知热流可以显著地提高解的精度和算法的稳定性,同时共轭梯度法可以显著地减小测量误差对结果的影响.所开发的算法可以在非常短的时间内得到较准确的解,基于CFD模型的反问题算法迭代一步需要6.5 s,而文中算法迭代一步仅需要0.078 s,与基于CFD模型的反问题算法相比,速度提高了80倍. In this study, a reduced order model based algorithm was developed for inverse convection heat transfer. The reduced order models were established for the direct problem, the sensitivity problem and the adjoint problem respectively with the proper orthogonal technique(POD). The performance of the present algorithm was examined by an inverse forced convection problem to determine the unknown space-dependent heat flux at the outer boundary of a circular pipe. The inverse problem was resolved in a function optimization way by the conjugate gradient method. The results show that the present POD based inverse algorithm can significantly reduce the influence of measurement error on the computational results and obtain accurate solution in very short time. The computational speed of the present inverse algorithm is 80 times higher than that of the CFD based inverse algorithm.
作者 丁鹏 陶文铨
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第3期14-16,54,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50636050)
关键词 最佳正交分解 低阶模型 对流换热反问题 proper orthogonal decomposition reduced order model inverse convection heat transfer problem
  • 相关文献

参考文献7

  • 1ALIFANOV O M. Inverse heat transfer problems [M]. Berlin,Germany: Springer-Verlag, 1994.
  • 2PANTANKAR S V. Numerical fluid flow and heat transfer [M]. New York, USA: Academic Press, 1981.
  • 3丁鹏,陶文铨.一种预测流动和传热问题的快速算法[J].西安交通大学学报,2007,41(3):271-273. 被引量:6
  • 4BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows [J]. Annual Review Fluid Mech, 1993, 25. 539-575.
  • 5HOLMES P, LUMLEY J L, BERKOOZ G. Turbulence, coherent structures, dynamical systems and symmetry [M]. Cambridge, UK: Cambridge Univ. Press, 1996.
  • 6SIROVICH L. Turbulence and the dynamics of coherent structure[J]. Q Appl Math, 1987(3):561-571.
  • 7DING Peng,WU Xuehong, HE Yaling, et al. A fast and efficient method for predicting fluid flow and heat transfer problems[J]. ASME Journal of Heat Transfer, 2008,130(3) :032502. 1-17.

二级参考文献4

  • 1Berkooz G,Holmes P,Lumley J L.The proper orthogonal decomposition in the analysis of turbulent flows[J].Annual Review Fluid Mech,1993,25:539-575.
  • 2Holmes P,Lumley J L,Berkooz G.Turbulence,coherent structures,dynamical systems and symmetry[M].Cambridge,UK:Cambridge Univ.Press,1996.
  • 3Sirovich L.Turbulence and the dynamics of coherent structure:part Ⅰ[J].Q Appl Math,1987(3):561-571.
  • 4Pantankar S V.Numerical fluid flow and heat transfer[M].New York:Academic Press,1981.

共引文献5

同被引文献41

  • 1丁鹏,陶文铨.一种预测流动和传热问题的快速算法[J].西安交通大学学报,2007,41(3):271-273. 被引量:6
  • 2Le Niliot C, Rigollet F, Petit D. An experimental identification of line heat sources in a diffusive system using the boundary element method[J]. Heat and Mass Transfer, 2000, 43:2205 -2220.
  • 3Le Niliot C, Rigollet F. A method ior muhiple steady line heat sources identitleation in a diffusive system: application to an experimental 2 D problem [ J ]. Heat and Mass Transfer, 2001 , 44 : 1426 - 1438.
  • 4许建红,程林松,周颖,马丽丽.一种求解低渗透油藏启动压力梯度的新方法[J].石油勘探与开发,2007,34(5):594-597. 被引量:57
  • 5Brouwer D R, Jansen J D. Dynamic optimization of water flooding with smart wells using op- timal control theory[J]. SP[Journal, 2004, 9(4) : 391-402.
  • 6Marc R, Moreno-Ostos E, Garcia-Barcina J M, Armengo[J]. Tailoring dam structures to wa- ter quality predictions in new reservoir projects: assisting decision-making using numerical modeling[J]. Journal of Environmental Management, 2010, 91 (5) : 1255-1257.
  • 7Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in the analysis of turbulent flows [ J]. Annual Review of Fluid Mechanics, 1993, 25 ( 1 ) : 539-575.
  • 8Singh S J, Chatterjee A. Galerkin projections and fmite elements for fractional order deriva- tives [ J]. Nonlinear Dynamics, 2006, 45 ( 1/2 ) : 183- 206.
  • 9Maitre O P, Mathelin L. Equation-free model reduction for complex dynamical systems [J ]. Internationa[Journal for Numerical Methods in Fluids, 2010, 63(2) : 163-184.
  • 10di Mare F, Knappstein R. Statistical analysis of the flow characteristics and cyclic variability using proper orthogonal decomposition of highly resolved LES in internal combustion engines [J]. Computers & Fluids, 2014, 105: 101-112.

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部