期刊文献+

改进粒子滤波算法在目标状态估计中的应用

Application of Improved Particle Filter Algorithm in Target State Estimation
下载PDF
导出
摘要 针对粒子滤波算法(PF)建议性函数的选择问题和粒子匮乏现象,提出了改进粒子滤波算法.该算法利用无迹卡尔曼滤波(UKF)产生建议性分布,提高估计精度;采用马尔科夫蒙特卡罗法(MCMC)保持粒子多样性,抑制粒子匮乏现象.仿真结果表明该算法的目标状态估计精度明显优于PF、UPF、PF-MCMC和PF-EKF-MCMC算法. Aiming at the choice of proposal function and degeneracy problem in particle filter (PF), an improved algorithm is put forward. Unscented Kalman Filter (UKF) is used to produce the proposal function, the estimate accuracy can be improved, Markov Chain Monte Carlo (MCMC) is applied to keep the diversity of the particles and solve the degeneracy problem. The simulation result illustrates the algorithm is superior to PF, UPF, PF-MCMC (PF with MCMC) and PF- EKF-MCMC (PF with EKF and MCMC) in accuracy.
出处 《光电技术应用》 2009年第1期66-69,共4页 Electro-Optic Technology Application
基金 辽宁省自然科学基金(20082176) 浙江大学CAD&CG国家重点实验室开放基金(A0906)
关键词 粒子滤波 无迹卡尔曼滤波 马尔科夫蒙特卡罗法 状态估计 particle filter Unscented Kalman Filter Markov Chain Monte Carlo state estimation
  • 相关文献

参考文献5

  • 1Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering[ R]. Cambridge: Universi- ty of Cambridge, 1998 : 1 - 36.
  • 2Gordon N J, Salmond D J, Smith A F M. Novel ap-proach to non-linear/non-Gaussian Bayesian state estimation [J]. lEE Proceedings-F, 1993, 140(2) : 107 - 113.
  • 3Julier S, Uhlmann J. A New Method for the Nonlinear Transformation of Means and Covariance in Filters and Estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 4Hastings W K. Monte Carlo sampling methods using Markov chains and their applications [ J ]. Biometrika, 1970,157:97 - 109.
  • 5C Andrieu, N de Freitas, A Doucet. An introduction to MCMC for maching learning [ J ]. Maching Learning, 2003, 50(1/2) :5 -43.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部