摘要
遗传算法是模拟生物进化过程的计算模型,是一种全局优化搜索算法。将遗传算法与转录因子结合位点识别问题相结合的新方法,以一致性序列模型作为保守motif的描述模型,通过对motif序列与待测序列的比对问题进行编码,将其转化成搜索空间中的优化问题,利用遗传算法来搜索最优解,预测转录因子的结合位点。实验结果表明,这种新的方法是有效的,它在占用少量内存的情况下能够准确地识别出待测转录因子结合位点。
Genetic algorithm is a computation model that simulating bio - evolution, it is a global optimization search method. This paper proposcs a new transcription factor binding sites finding method based on genetic algorithm. By the way of using consensus model as the descriptive model of motif and encoding, it converts this assignment to an optimization problem in a search space, searches the optimum solution by genetic algorithm. The experiment results demonstrate that the new approach is efficient, it can find transcription factor bingding sites while needing less memory space.
出处
《生物信息学》
2009年第1期72-74,77,共4页
Chinese Journal of Bioinformatics
基金
教育部应用统计重点实验室和东北师范大学青年自然科学基金项目(20061003)资助