期刊文献+

伪弹性合金内衬复合材料压力容器的强度分析 被引量:2

Analysis on the strength of composite pressure vessels with pseudo-elastic inner alloy lining
原文传递
导出
摘要 具有伪弹性合金内衬的纤维缠绕复合材料压力容器的承载能力很大程度上取决于内衬的伪弹性特性,合理地设计合金的伪弹性范围,可使容器具有最佳的承载能力。根据伪弹性合金的相变理论和复合材料弹性力学,并结合强度理论,给出了具有伪弹性合金内衬的复合材料压力容器的强度分析方法以及承载能力的确定方法。研究结果表明:伪弹性合金内衬改变了复合材料压力容器的受力状态,将铝合金的内衬主宰变成了外壳主宰,使复合材料的功能可以得到更充分地发挥;同时可以确保内衬工作在线弹性范围内,卸载时也不会发生受压屈曲现象。所以,具有伪弹性合金内衬的复合材料压力容器能够增加极限承载能力,延长内衬的工作寿命。 The loading capacity of filament-wound composite materials pressure vessels with pseudo-elastic inner alloy lining depends on the pseudo- elasticity of the inner lining. The optimum loading capacity of vessels can be obtained by designing the pseudo-elasticity range of the alloy reasonably. Based on the phase transformation theory of the pseudo-elasticity alloy and mechanics of the composite materials with combination of the strength theory, the analytical method of strength and the enhancement conditions of the load- bearing capability of the composite materials pressure vessels with pseudo-elastic inner alloy lining were suggested. The research results show that the pseudo-elastic inner alloy lining can improve the stress state, change the inner lining master into the shell master, and make full use of the functions of the composite materials. Meanwhile, it can ensure that the inner lining works in the linear elastic range, and the pressed buckling phenomenon cannot happen when unloading. So the composite materials pressure vessels with pseudo-elastic inner alloy lining can increase the limit loading capacity and lengthen the work life of the inner lining.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第1期146-149,共4页 Acta Materiae Compositae Sinica
基金 863计划项目(2007AA03A229-1)
关键词 复合材料 压力容器 伪弹性合金 相变理论 承载能力 composite materials pressure vessels pseudo-elastic alloy phase transformation theory loading capacity
  • 相关文献

参考文献9

二级参考文献45

共引文献77

同被引文献24

  • 1沈军,谢怀勤,侯涤洋.纤维缠绕聚合物基复合材料压力容器的可靠性设计[J].复合材料学报,2006,23(4):124-128. 被引量:18
  • 2Harold D B, Dennis D D, William L R. Composite overwrapped pressure vessels, NASA/TP 2002- 210769 [R]. Washington; NASA, 2002: 1-270.
  • 3Aziz Under, Onur Sayman, Tolga Dogan, Necmettin Tarakcioglu. Burst failure load of composite pressure vessels [J]. Composite Structures, 2009, 89(1): 159-166.
  • 4Craig Clauss. Design, qualification, and thermal testing of a specialized composite overwrap pressure vessel ( COPV), AIAA2007-5558 [R]. Cincinnati: AIAA, 2007: 1-10.
  • 5Eric M C. Design and test of a lightweight pressure vessel, AIAA2007-2622 [R]. Williamsburg: AIAA, 2007: 1-9.
  • 6James B C. Development of COPV- related standards, AIAA 2007-2146 [R]. Honolulu: AIAA, 2007: 1-17.
  • 7Pappu L N, Murthy S L. Designing of a fleet leader program for carbon composite overwrapped pressure vessels, AIAA 2009-2517 [R]. California: AIAA, 2009:1-14.
  • 8David I. G. Daniel J M. Finite element analysis of a composite overwrapped pressure vessel, AIAA 2004-3506 [R]. Florida: AIAA, 2004: 1-15.
  • 9Park J S, Hong C S, Kim C G, Analysis of filamem wound composite structures considering the change of winding angles through the thickness direction [J]. Composite Structures. 2002, 55(1): 63-71.
  • 10Hartung R F. Planar wound filamentary pressure vessel [J] AIAA Journal, 1963, 12(1): 2842-2844.

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部