期刊文献+

一种基于Choquet模糊积分小波系数选择的遥感图像融合方法 被引量:3

Remote sensing images fusion based on wavelet coefficients selection using choquet fuzzy integral
下载PDF
导出
摘要 为较好地保留多光谱、高分辨率遥感影像融合时的光谱信息和高分辨率信息,在小波变换基础上提出了一种基于模糊积分的融合算法,其基本思想是在IHS空间,对强度分量I及高分辨率图像进行小波分解后,保留I分量的低频系数,对于高频细节特征,将局部窗口内的方差、平均梯度和能量当作单因素指标,应用Choquet模糊积分综合各单因素指标得到一个综合指标,并据此来选取小波系数。实验结果表明,该算法在光谱质量改善方面明显优于IHS以及一些经典的小波变换遥感图像融合算法,是一种有效的遥感图像融合算法。 In order to decrease the spectral distortion while improving the spatial resolution during the fusion of remote sensing images, an image fusion method based on Choquet fuzzy integral is proposed in this paper. Firstly, an intensity-hue-saturation (IHS) transform is performed for multispectral images. Then the panchromatic image and the intensity component of multispectral images are decomposed using discrete wavelet transform respectively. In the wavelet domain, for the low-frequency component, the wavelet coefficients of the I component are selected directly. For the high-frequency component, the wavelet coefficients are selected according to an integrative index which is colligated with the values of variation, average gradient and energy in the local region by Choquet fuzzy integral. Further, the fused intensity component is obtained by inverse discrete wavelet transform. Finally, the fused images are obtained by inverse IHS transform. The experiment results demonstrate our proposed method effectively.
出处 《遥感学报》 EI CSCD 北大核心 2009年第2期263-268,共6页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金资助项目(编号:60774092) 教育部科学技术研究重点项目(编号:107057) 教育部博士点基金(编号:20070294027)
关键词 遥感图像融合 小波变换 模糊积分 IHS变换 remote sensing images fusion, wavelet transform, fuzzy integral, IHS transform
  • 相关文献

参考文献2

二级参考文献18

  • 1倪国强.多波段图像融合算法研究及其新发展(Ⅱ)[J].光电子技术与信息,2001,14(6):1-6. 被引量:55
  • 2蒋晓瑜,高稚允,周立伟.小波变换在多光谱图像融合中的应用[J].电子学报,1997,25(8):105-108. 被引量:21
  • 3XYDEAS C S, PETROVIC V. Objective image fusion performance measure[J]. IEEE Electronics Letters, 2000, 36(4): 308-309.
  • 4MUROFUSHI T, SUGENO M. An interpretation of fuzzy measure and the choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2): 201-227.
  • 5LALLIER E, FAROOQ M. A real time pixel-level based image fusion via adaptive weight averaging[A]. Proceedings of the 3rd International Conference on Information Fusion[C]. Canada: Coll. of Canada, 2000. 3-13.
  • 6NIKOLOV S G, BULL D R, CANAGARAIAH C N, et al. Image fusion using a 3-D wavelet transform[A]. Proceedings of the Seventh International Conference on Image Processing and its Applications[C]. Manchester: Bristol Univ., 1999. 235-239.
  • 7BURT P J, KOLCZYNSKI R J. Enhanced image capture through fusion[A]. Proceedings of the IEEE Fourth International Conference on Computer Vision[C]. Berlin: David Sarnoff Res. Center, 1993. 173-182.
  • 8杨伦标.模糊数学原理及应用[M].广东:华南理工大学出版社,1995..
  • 9Pohl C and Van Genderen J L.Multisensor image fusion in remote sensing:concepts,methods and applications[J].International Journal of Remote and Sensing,1998,19(5):823-854.
  • 10Zhou J,Civco D L,and Silander J A.A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J].International Journal of Remote and Sensing,1998,19(4):743-757.

共引文献15

同被引文献38

引证文献3

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部