摘要
设I是一个闭区间[0,1],且f:I→I是一个连续型2∞单峰映射.本文作者研究了逆向限空间lim{I,f}的结构,证明了:(1)Order(lim{I,f})=w0当且仅当M同胚于康托集;(2)Orderlim{I,f}=w0+1当且仅当M不同胚于康托集.
Let I be a closed interval and f:I→I be a continuous type 2∞ unimodal mapping.We investigate the structure of the inverse limit space lim{I,f} and prove the following properties:(1) such as Order(lim{I,f})=w0 iff M is homeomorphic to the Cantor set,(2) such as Order(lim{I,f})=w0+1 iff M is not homeomorphic to the Cantor set.
出处
《纺织高校基础科学学报》
CAS
1998年第2期143-146,共4页
Basic Sciences Journal of Textile Universities
关键词
连续型2^∞
单峰映射
逆向限空间
continuous typt 2∞,unimodal mapping,inverse limit space