期刊文献+

粒子群小波人工神经网络组合模型的径流预测 被引量:5

Monthly Runoff Forecasting by WANN Model based on PSO
下载PDF
导出
摘要 为了克服传统径流过程预测容易产生累积误差的缺点,提高径流预测精度,提出了一种基于粒子群小波人工神经网络组合模型的月径流过程预测算法,该算法具有原理简单、实用性强等特点。将该算法用于预测某电厂月径流过程计算,结果表明,其预测结果精度高,可为水电厂提供可靠的入库径流,对水电厂制定合理的运行方式有重要作用。 In order to overcome the shortcoming of easily-produced accumulation error of tradition monthly runoff process forecasting and to improve the accuracy of runoff forecasting, this paper puts forward a monthly runoff forecasting algorithm based on a WANN model based on PSO. This algorithm is easy in principle and good in practicality. This algorithm was applied to the monthly runoff forecasting of a hydropower plant and the results showed that its forecasting accuracy is high, so that it can provide reliable inflow for hydropower station and plays a great role in making reasonable operation modes of hydropower statio.
出处 《水力发电》 北大核心 2009年第1期4-6,共3页 Water Power
基金 国家自然科学基金重点项目(50539140) 国家自然科学基金项目(50679098
关键词 径流预测 粒子群算法 小波分析 人工神经网络 runoff forecast PSO wavelet analysis ANN
  • 相关文献

参考文献9

二级参考文献52

共引文献414

同被引文献38

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部