摘要
提出了基于伴随系统理论的求解病态潮流的计算方法。把潮流计算转化为无约束非线性最小二乘问题,并根据伴随系统理论建立其对应的伴随系统。无约束非线性最小二乘问题的解可以通过对伴随系统进行简单的数值积分而求得。所提出的病态潮流计算方法,总能给出潮流有解和无解的明确答案,如果潮流有解时,能计算出潮流解;如果潮流无解时,则计算出潮流方程的最小二乘解。通过对3个典型的病态潮流系统进行算例分析,验证了该方法的有效性。
A method for solving ill-conditioned load flow based on adjoint system theory was proposed. The ill-conditioned load flow calculation was converted to a nonlinear least square (NLS) problem. A corresponding adjoint system for the NLS problem can be built based on the theory of adjoint system. The solution of the NLS problem can be found simply by integrating the adjoint system. In this calculation scheme, whatever a solution can be found either a true solution or the closest solution. The effectiveness of the method has been verified on 3 ill-conditioned power flow examples.
出处
《中国电力》
CSCD
北大核心
2009年第3期21-24,共4页
Electric Power
基金
国家自然科学基金资助项目(50577004)
东北电力大学研究生创新基金资助项目
关键词
伴随系统
梯度流
非线性最小二乘
病态潮流
adjoint system
gradient flow
nonlinear least square
ill-conditioned power flow