期刊文献+

具有常数输入的SEIS模型的全局渐近稳定性 被引量:15

Global asymptotic stability of an SEIS epidemic model with constant input
下载PDF
导出
摘要 讨论一类具有常数输入且传染率为非线性的SEIS流行病传播数学模型,给出了决定疾病灭绝和持续生存的基本再生数R_0.当R_0<1时,无病平衡点全局渐近稳定;当R_0>1时,利用第二加性复合矩阵证明了惟一地方病平衡点全局渐近稳定. An epidemic model with constant input and nonlinear incidence rate is investigated in this paper, and the basic reproductive number R0 which determines the outcome of the infections disease is found. The disease-free equilibrium is globally asymptotical stable when R0 〈 1. Using second additive compound matrix, it is proved that the unique endemic equilibrium is globally asymptotical stable when R0 〉 1.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2009年第1期53-57,共5页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词 传染病模型 非线性传染率 基本再生数 全局渐近稳定性 epidemic model nonlinear incidence rate basic reproductive number global asymptotical stability
  • 相关文献

参考文献4

  • 1Liu Weimin, Levin S A, Lwasa Yoh. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. Math Biosci, 1986, 23(1): 187-204.
  • 2Ruan Shigui, Wang Weidi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Differential Equations, 2003, 188: 135-163.
  • 3Hethcote H, Ma Zhien, Liao Shengbing. Effects of quarantine in six endemic models for infectious diseases[J]. Math Biosci, 2002, 180: 141-160.
  • 4Li M Y, Graef J R, Wang Liancheng, et al. Global dynamics of an SEIR epidemic model with a varying total population size [J]. Math Biosci, 1999, 160: 191-213.

同被引文献65

  • 1苟清明,王稳地.一类具有饱和发生率的SEIS模型的全局稳定性[J].生物数学学报,2008,23(2):265-272. 被引量:12
  • 2杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 3徐文雄,张太雷,徐宗本.非线性高维自治微分系统SEIQR流行病模型全局稳定性[J].工程数学学报,2007,24(1):79-86. 被引量:11
  • 4陈兰荪.数学生态模型与研究方法[M].北京:科学出版社,1996.
  • 5LIU Wei-min, LEVIN S A, LWASA Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models [J]. Math Biosci, 1986, 23(1): 187-204.
  • 6RUAN Shi-gui, WANG Wen-di. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. J Differential Equations, 2003, 188: 135-163.
  • 7HETHCOTE H, MA Zhi-en, LIAO Sheng-bing. Effects of quarantine in six endemic models for infectious diseases[J]. Math Biosci, 2002, 180: 141-160.
  • 8LI M Y, GTAEF J R, WANG Lian-cheng, et al. Global dynamics of an SEIR epidemic model with a varying total population size [J]. Math Biosci, 1999, 160:191-213.
  • 9LIU Weimin, LEVIN S A, LWASA You. Influence of Nonlinear Incidence Rates upon the Behavior of SIRS Epidemiologieal Models [J]. Math Biosci., 1986, 23(1):187-204.
  • 10RUAN Shigui, WANG Wendi. Dynamical Behavior of an Epidemic Model with a Nonlinear Incidence Rate[ J ]. Journal of Differential Equations, 2003,188 : 135 - 163.

引证文献15

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部