期刊文献+

商模N_φ上解析Toepltz算子的约化子空间

Reducing subspace of analytic Toeplitz operators on N_φ-quotient module
下载PDF
导出
摘要 假设T^n表示多圆盘,H^2(T^n)表示T^n上的Hardy空间.K表示H^2(T^n)中由{(z_1-φ(z_2))f_1+…+(z_1-φ(z_n))f_(n-1):f_i∈H^2(T^n),1≤i≤n-1}生成的子模, N_φ表示K在H^2(T^n)中的商模.则N_φ上以有限Blaschke乘积ψ(z)为符号的Toeplitz型算子T_ψ是可约的. Let T^n be the polydisc in C^n, H^2(T^n)be the Hardy space on D^n. Suppose that K is the submodule of H^2(D^n) generated by {(z1 -Ф(z2))f1+…+(z1 -Ф(zn))fn-1 : fi∈ H^2(T^n), 1 ≤i≤n-1}, NФ is the quotient module of K in H^2(T^n).Then analytic Toeplitz operators Tψ with finite Blaschke product ψ as symbol are reducible.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2009年第1期95-101,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 重庆邮电大学青年基金(A2007-28) 国家自然科学基金(10671083)
关键词 N_φ-模 TOEPLITZ算子 约化子空间 加权BERGMAN空间 NФ-module Toeplitz operator reducing subspace weighted Bergman space
  • 相关文献

参考文献6

  • 1Nordgren E A. Reducing subspaces of analytic Toeplitz operators[J]. Duke Math J, 1967, 34: 175- 181.
  • 2Chan K C, Seubert S M. Reducing subspaces of compressed analytic Toeplitz operators on the Hardy space[J]. Integral Equations and Operator Theory, 1997, 28: 147-157.
  • 3Hu Junyun, Sun Shunhua, Xu Xianmin, et al. Reducing subspace of analytic Toeplitz operators on the Bergman space[J]. Integral Equations and Operator Theory, 2004, 49: 387- 395.
  • 4Zhong Changyong. Multiplication operators and M-Berezin transforms[D]. Nashville, Tennessee: Vanderbilt University, 2006.
  • 5Xu Anjian, Yan Congquan. Reducing subspace of analytic Toeplitz operators on weighted Bergman space[J]. Preprint.
  • 6吴艳,徐宪民.超等距膨胀与N_φ上Toeplitz算子的约化子空间[J].嘉兴学院学报,2007,19(6):33-37. 被引量:1

二级参考文献2

  • 1Junyun Hu, Shunhua Sun, Xianmin Xu, Dahai Yu. Reducing Subspace of Analytic Toeplitz Operators on the BergmanX Space. Integr. Equ. Oper. Theory49 (2004), 387-395.
  • 2Rongwei Yang. Operator Theory in the Hardy Space over the Bidisk (Ⅱ). Integr. Equ. Oper. Theory 42 (2002), 99 - 124.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部