期刊文献+

多特征联合的序贯鉴别方法去除SAR ATR中虚假RoIs

Sequential Discrimination with Multi-Features to Remove False ROIs in SAR ATR
下载PDF
导出
摘要 在SAR图像机动目标自动识别过程中,因目标预筛选阶段采用次优的异常检测策略而产生大量虚假的感兴趣区域(Region of Interest,ROI),这些虚假ROIs很大程度上降低了目标识别的效率。该文提出一种基于多特征联合的序贯鉴别算法来去除虚假ROIs。该算法首先对ROI切片的目标特征做冗余性、鲁棒性和可分离性的定量分析,以选取互补性强、稳定好的最优特征,并按所选特征鉴别性能的优略进行排序,来构建序贯鉴别的观测矢量,然后利用各鉴别特征的统计模型和设定的虚警概率来计算各特征对应判决阈值,最后联合优选的多个特征进行序贯判决。文中利用X波段的MSTAR数据验证了本文的算法,并与二项式距离鉴别算法做性能比较。 Because the prescreening in the process of mobile target recognition in SAR imagery usually adopts anomaly detection, a suboptimum approach,many false ROIs are produced,which can reduce hardly the efficiency of the ATR. A new method based on se- quential discrimination with multi-features is proposed to remove these false ROIs in this paper. Firstly, the features of mobile target ROIs are quantitatively analyzed for their redundancy, robustness and separability, and the best features are selected to form the observing vec- tor for sequential discrimination and ordered by their discriminating performance. And then ,the threshold for each best feature is calcu- lated based on the probability of false alarm and its statistical model. Finally, these features are incorporated to do a sequential discrimi- nation. The performance of the above algorithm is validated by the X band MSTAR data, and is compared with the quadratic distance discriminating method.
出处 《信号处理》 CSCD 北大核心 2009年第2期163-168,共6页 Journal of Signal Processing
基金 国防预研项目(No.513220206)
关键词 SAR图像 ROI 目标识别 序贯鉴别 SAR image ROI Target Recognition Sequential discrimination
  • 相关文献

参考文献8

  • 1Chris Oliver, Shaun Quegan, Understanding synthetic aperture radar images, Artech House, Boston, London, 1998.
  • 2Principe. J. C. , Radisavljevic. A. , Fisher, J. ,. et al. Target prescreening based on a quadratic gamma discriminator, IEEE Trans. On Aerospace and Electronic Systems, 1998, 34(3) :706-715.
  • 3L. M. Novak, S. D. Halversen, G. J. Owirka, et al, Effects of polarization and resolution on SAR ATR, IEEE Trans. On Aerospace and Electronic Systems, 1997, Vol. 33, pp. 102- 116.
  • 4Jose C. Principe, Munchurl Kim, and John W. Fisher, Target discrimination in synthetic aperture radar using artificial neural networks, IEEE Trans. On Image Processing, 1998 Vol. 7(8) ,pp:1136 - 1149.
  • 5Cui Zhang, Tao Zou, Zhengzhi Wang, A target discrimination algorithm for high resolution SAR imagery, IEEE Proceeding of International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China,2003, pp : 863 - 867.
  • 6Yingqiang Lin, Bit Bhanu, Evolutionary feature synthesis for object recognition, IEEE Trans. On Systems, Man, and Cybernetics, Vol 35 2005, pp: 156 - 171.
  • 7Albertus C. van den Broek;Rob J. Dekker; Phillippe Steeghs, Robustness of features for automatic target discrimination in high-resolution polarimetric SAR data, Algorithms for Synthetic Aperture Radar Imagery X, SPIE 5095, pp: 242 - 253.
  • 8Daniel E. Kreithen and Shawn D. Halversen, A theoretical analysis of a ranking discrimination algorithm, Conference Record of The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, 1992, Vol. 1, pp :431 - 435.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部