期刊文献+

一种基于时间相关度的盲分离方法

An Algorithm of Blind Source Separation Based on Time Correlation
下载PDF
导出
摘要 本文从信号的相关性出发,提出信号时间相关度的定义,并证明了时间相关度定义具有如下性质:一组独立源信号的线性混合信号其时间相关度介于源信号中时间相关度的最小值和最大值之间。本文根据这一定义及性质,利用矩阵广义特征值理论,建立时间相关度的广义特征值问题,通过求解此广义特征值问题的特征矢量,从而达到分离信号的目的。本文算法适用于瞬时混合模型,仿真结果证明本算法可以应用与灰度图像的分离及复杂混合环境中声音的分离,计算简单,性能良好,效果真实可靠。 A concept of signal time correlation is given in this paper. It is proved that a linear mixture of statistically uncorrelated source signals has this property:the signal time correlation of any mixed signal is between the minimal and maximal value of its compo- nent source signals. Following this definition and property, a problem about generalized eigenvalue is obtained by using generalized matrix eigenvalue theory. The goal of blind separation of signals is achieved by getting the eigenvectors of the generalized eigenvalue problem. This algorithm is based on instantaneous-mixed module. This algorithm has been proved to adapt to the separation of black images and the separation of voices in complex environment. The calculation is simple;performance is all right and effect is good.
作者 刘彦 舒勤
出处 《信号处理》 CSCD 北大核心 2009年第2期204-209,共6页 Journal of Signal Processing
关键词 时间相关度 盲信号分离 BSS 广义特征值 Time Correlation Blind Source Separation BSS Generalized Matrix Eigenvalue
  • 相关文献

参考文献16

  • 1James V Stone. Blind source separation using temporal pre dictability [ J ]. Neural Computation, 2001 ; ( 13 ) : 1559- 1574.
  • 2Shengli Xie,Zhaoshui He,Yuli Fu. A Note on Stone' s Conjecture of Blind Signal Separation[ J]. Neural computation,2005 ; 17:321-330.
  • 3杨福生,洪波.独立分量分析的原理与应用.清华大学出版社.
  • 4Pham D T. Mutual information approach to blind separation for stationary sources [ C ]. In; Proceedings of ICA' 99 conference, Aussois, France, 1999:215-220.
  • 5朱孝龙,保铮,张贤达.基于分阶段学习的盲信号分离[J].中国科学(E辑),2002,32(5):693-703. 被引量:52
  • 6高鹰,谢胜利,姚振坚.一种新的基于广义特征值分解的盲信号分离算法[J].信号处理,2005,21(z1):102-105. 被引量:2
  • 7Borga, M. (1998). Learning multidimensional signal processing. Unpublished doctoral dissertation Linkoping University, Linkoping, Sweden.
  • 8Thi H N, Jutten C. Blind source separation for convolutive mixtures [ J ]. Signal Processing, 1995,45 (2) :209-229.
  • 9Amari S, Cichocki A. Adaptive blind signal processing-neural network approaches[J]. Proceedings of the IEEE,1998, 86(10) :2026-2048.
  • 10Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind convolution [ J ]. Neural Computation, 1995,7 : 1129-1159.

二级参考文献23

  • 1[1]He Zhenya, Yang Luxi, Liu Ju,Blind source separation using cluster-based multivariate density estimation algorithm,IEEE Trans on Signal Processing, 2000,48(2):575-579.
  • 2[5]James V. Stone. Blind source separation using temporal predictability. Neural Computation, No.13, pp. 1559-1574, 2001.
  • 3[6]Parra, L., Sajda, P.,: Blind source separation via generalized eigenvalue decomposition. Journal of Machine Learning Research, 4(2003) 1261-1269
  • 4Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks, 1999, 10(3): 626~634
  • 5Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computations, 1995, 7: 1129~1159
  • 6Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 1994, 7: 113~127
  • 7Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neural Computing, 1998, 22: 5~20
  • 8Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36: 287~314
  • 9Pham D T. Blind separation of instantaneous mixtures of sources via an independent component analysis. IEEE Trans Signal Processing, 1996, 44: 2768~2779
  • 10Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans Signal Processing, 1996, 44: 3017~3030

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部