期刊文献+

基于线性判别局部保留映射的人脸表情识别 被引量:4

Facial Expression Recognition Using Discriminant Locality Preserving Projections
下载PDF
导出
摘要 随着人机交互技术的发展,情感计算成为一个研究热点。局部保留映射(LPP)是一种最优的保持数据集局部结构的一种线性映射,它的特点是保留了样本的局部结构,但是它没有考虑判别信息,从而容易引起类间距离小的类别之间的重叠。本文提出了基于线性判别的局部保留映射(DLPP)算法并将其应用到表情识别问题中。与LPP相比,DLPP的改进之处在于将判别分析的思想引入LPP。同时考虑样本间的相邻关系和模式类之间的相邻关系,从而得到能正确分类的最优投影方向。在Yale人脸库和JAFFE表情库中的一系列表情识别实验结果表明,DLPP对于人脸表情识别更为有效。 Due to the development of human-computer interaction,there has been much interest in facial recognition. Locality Preserving Projections (LPP) is a linear projection that arises by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP is designed for preserving local structure, but it fails to take account of the discriminant information. Thus, Discriminant Locality Preserving Projections (DLPP) is presented in this paper, and it' 11 be applied to facial expression recognition problem. The improvement of DLPP algorithm over LPP is that discriminant analysis has been introduced into LPP algorithm. By consid- ering both the neighborhood structure of the samples and the neighborhood of the classes ,we obtain an optimal projecting direction which can classify the samples more efficiently. A series of experiments were performed on Yale and JAFFE face databases and the result shows that DLPP is more efficient for facial expression recognition problem.
出处 《信号处理》 CSCD 北大核心 2009年第2期233-237,共5页 Journal of Signal Processing
基金 国家自然科学基金项目(60672062 60472033) 国家"九七三"重点基础研究发展规划项目(2004CB318005)
关键词 局部保留映射 线性判别分析 表情识别 Locality Preserving Projections (LPP) Linear Discriminant Analysis (LDA) Facial expression recognition
  • 相关文献

参考文献11

  • 1Ekamn P. , Friesen W V. , Facial action coding system ( FACS) : manual [ M ]. Consulting Psychologists Press, 1978.
  • 2Mehrabian A. , Communication without words [ J ] : Psychology Today. 1968,2(4) :53-56.
  • 3Kobayashi H, Hara F, Lkeda S, et al, A basic study of dynamic recognition of human facial expression [ A ] : IEEE Proc of International Workshop on Robot and Human Communication [ C ]. Piscataway. IEEE Press, 1993.271-275.
  • 4B. Fasel, Juergen Luettion, Automatic facial expression analysis : a survey : Pattern Recognition 36 (2003) ,259-275.
  • 5P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs. Fisherface: Recognition using class specific linear projection: IEEE Trans. Pattern Anal. Machine Intell. , vol. 19, p711-720, July 1997.
  • 6K. Etemad and R. Chellappa, Discriminant analysis for recognition of human face images : J. Opt. Soc. Amer. A, vol. 14, no. 8,pp1724-1733.
  • 7Otsuka T and Ohya J. , Spotting Segments Displaying Facial Expressions from Image Sequences Using HMM [ A] : IEEE Proceedings International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998. 442- 447.
  • 8Sam T. Roweis, and Lawrence K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding:Science, vol. 290,22 December 2000.
  • 9M. Belkin, P. Niyogi, Laplacian eigemnaps and spectral techniques for embedding and clustering: Processing System, vol. 15,2001.
  • 10X. He and P. Niyogi, Locality Preserving Projections:Proc. Conf. Advances in Neural Information Processing System, 2003.

同被引文献39

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部