期刊文献+

基于约束最小均方的噪声抑制MOE盲多用户检测

Noise suppression MOE blind multiuser detection based on constrained least mean square
下载PDF
导出
摘要 针对最小输出能量(minimum output energy,MOE)检测器的权向量由于受到噪声的影响而导致性能下降的问题,设计了一种新的MOE检测器,并且利用约束最小均方(least mean square,LMS)算法得到权向量,提出DS-CDMA系统下一种基于约束LMS的MOE盲噪声抑制多用户检测算法。该算法将权向量和噪声子空间正交,消除了权向量中的噪声分量,降低了噪声输出能量,从而使系统的性能优于常规的LMS盲多用户检测。仿真结果证明了所提算法的有效性和优越性。 The performance of the minimum output energy (MOE) detector will degrade when it is affected by the noise in the weight vector. In order to overcome this shortage, a blind MOE noise suppression muhiuser detection algorithm based on constrained least mean square (LMS) is proposed for DS-CDMA system. A new MOE detector is designed and the constrained LMS algorithm is used to obtain the MOE weight vector adaptively. The proposed algorithm makes orthogonal processing between the weight vector and the noise subspace so that the noise in the weight vector is mitigated and the output energy of the noise is reduced. Therefore the proposed algo- rithm outperforms the conventional LMS blind multiuser detection. Simulation results are presented to demonstrate the effectiveness and superiority of the proposed algorithm.
出处 《信号处理》 CSCD 北大核心 2009年第2期270-273,共4页 Journal of Signal Processing
基金 博士学科点专项科研基金(20050145019)
关键词 DS-CDMA 多用户检测 最小输出能量 约束最小均方算法 盲自适应 DS-CDMA multiuser detection MOE constrained LMS algorithm blind adaptive
  • 相关文献

参考文献10

  • 1S. Verdu, Minimum Probability of Error for Asynchronous Gaussian Multiple Access Channels [ J ]. IEEE Transactions on Information Theory, IT-32 ( 1 ) : 85- 96,1986.
  • 2X. D. Wang and H. V. Poor, Blind adaptive muhiuser detection in muhipath CDMA channels based on subspace tracking [ J]. IEEE Transactions on Signal Processing, 46 ( 11 ) :3030-3044,1998.
  • 3Y. Song and S. Roy, Blind adaptive reduced-rank detection for DS-CDMA signals in multipath channels [ J ]. IEEE Journal on Selected Areas in Communications, 17 ( 11 ) : 1960-1970,1999.
  • 4S. ROY, Subspace blind adaptive detection for multiuser CDMA [ J ]. IEEE Transactions on Communications, 48 ( 1 ) :169-175,2000.
  • 5X. D. Zhang and W. Wei, Blind adaptive muhiuser detection based on Kalman filtering [ J ]. IEEE Transactions on Signal Processing,50 ( 1 ) :87-95,2002.
  • 6Y. L. Wu, J. Gu, X. B. Xu, J. Yang and S. D. Zhou, Blind muhiuser detection based on Chebyshev approximation [ C ]. ICSP, 2 : 1727-1730,2004.
  • 7X. D. Wang and H. V. Poor, Blind Muhiuser Detection: A Subspace Approach [ J ]. IEEE Transactions on Information Theory,44 ( 2 ) : 677- 690,1998.
  • 8M. Honig, U. Madhow and S. Verdu, Blind adaptive multiuser detection [ J ]. IEEE Transactions on Information Theory ,41 (4) :944-960,1995.
  • 9O. L. Ⅲ Frost, An algorithm for linearly constrained adaptive array processing [ C ]. Proceedings of the IEEE, 60 (8) :926-935,1972.
  • 10A. J. Caamano, D. Segovia-Vargas and J. Ramos, Blind Adaptive Krylov Subspace Multiuser Detection [ C ]. IEEE Vehicular Technology Conference,4 : 2338-2341,2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部