期刊文献+

免疫算法在焦化装置软测量中的应用

Application of Immune Algorithm in Soft Sensor Modeling of Coke Sets
下载PDF
导出
摘要 提出了一种自适应免疫算法,其很好地解决了原始免疫算法中收敛精度低和寻优速度慢的缺点。通过对比分析标准测试函数的计算结果,自适应免疫算法的优良性得到充分地证明。然后,免疫算法被用于优化BP神经网络的结构和参数。结果表明,不但网络结构得到较好地控制,而且泛化性能也有较大地提高。最后,算法在优化神经网络上的有效性也在焦化装置精馏塔汽油干点软测量建模中得到很好地证实。 In this paper, a self-adaptive immune algorithm (SAIA) problems of slow convergence speed and low calculation precision of the was presented which well addressed the original immune algorithm. By analyzing the results of bench mark functions, the excellent performance of SAIA was proved. Then, the SAIA was applied to optimize the structure and parameters of BPNN. And the availability of algorithm optimizing neural network was proved by applying BPNN in gas concentration soft sensor modeling of coke sets.
作者 蔡羿
出处 《广州化工》 CAS 2009年第1期17-19,34,共4页 GuangZhou Chemical Industry
关键词 免疫算法 BP神经网络 软测量 immune algorithm BP neural network soft sensor
  • 相关文献

参考文献10

  • 1L.Fortuna, A.Rizzo, M.Sinatra, M.G. Xibilia. Soft analyzers for a sulfur recovery unit [J]. Control Engineering Practice, 2003,11: 1491-1500.
  • 2Gwo-Ching Liao.Ta-Peng Tsao. Application embedded chaos search immune genetic algerithm for short-term unit commitment. Electric Power Systems Research,2004,7( 1 ): 135 - 144.
  • 3VictorA Braberman. Verification of Real-Time Design: Combining Scheduling Theory with Automatie Formal Verficaton [J]. Software Engineering Notes, 1999,24(6):494-511.
  • 4Jeffrey M Thompson,Steven P Miller.Specification-Based Prototyping for Embedded[J]. Software Engineering Notes, 1999,24(6): 163 - 180.
  • 5Hugo Fierz. The CIP Method: Component-and Model-Based Construction of Embedded System [J].Software Engineering Notes, 1999,24(6):375-393.
  • 6I.L. Lopez Cruz, L.G. Van Willigenburg, G. Van Straten. Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 2003,3:97-122.
  • 7Buthainah Al-kazemi. Multi-Phase Particle Swarm Optimization. Ph.D Dissertation, Syracuse University, Italia.2002.
  • 8Z.Michalewicz. Genetic algorithms+Data Structures-Evolution Program [Z]. AI Series, Springer Verlag, New York, 1994.
  • 9D.E.Goldberg.Genetic Algorithms in Search,Optimization and Machine Learning [M]. Reading, MA: Addison Wesley, 1989.
  • 10张栋,蔡开元.基于遗传算法的神经网络两阶段学习方案[J].系统仿真学报,2003,15(8):1088-1090. 被引量:22

二级参考文献7

  • 1D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading, MA: Addison Wesley, 1989.
  • 2Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Program [Z]. AI Series, Springer Verlag, New York, 1994.
  • 3Liang Wang, John Yen. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter [J]. Fuzzy Sets and systems, 1999, 101: 353-362.
  • 4Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Trans. Neural Network,1994. 5: 39-53.
  • 5Ilona et al. An investigation into the application of neural networks,fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J].Nenrocomputing, 1999, 24: 37-54.
  • 6M. T. Hagan, M. B. Menhaj. Training feedforward networks with the Marquardt algorithm [J]. IEEE Trans. Neural Notworks, 1994, 5:989-993.
  • 7D. Nguyen, B. Widrow. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights [J].in Int. Joint Conf. Neural Networks, 1990, 3: 21-26.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部